• Title/Summary/Keyword: Deposition of Pt

Search Result 433, Processing Time 0.028 seconds

Interfacing Silicate Layer Between MoO3 Ribbon and Pt Metaldots Boosts Methanol Oxidation Reaction

  • Lee, Dohun;Jeong, Juwon;Manivannan, Shanmugam;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.273-281
    • /
    • 2020
  • Constructing and making highly active and stable nanostructured Pt-based catalysts with ultralow Pt loading are still electrifying for electrochemical applications such as water electrolysis and fuel cells. In this study, MoO3 ribbons (RBs) of few micrometer in length is successfully synthesized via hydrothermal synthesis. Subsequently, 3-dimentional (3D)-silicate layer for about 10 to 15 nm is introduced via chemical deposition onto the pre-formed MoO3 RBs; to setup the platform for Pt metaldots (MDs) deposition. In comparison with the bare MoO3 RBs, the MoO3-Si has served as a efficient solid-support for stabilizing and accommodating the uniform deposition of sub-2 nm Pt MDs. Such a structural design would effectively assist in improving the electronic conductivity of a fabricated MoO3-Si-Pt catalyst towards MOR; the interfaced, porous and 3D silicate layer has assisted in an efficient mass transport and quenching the poisonous COads species leading to a significant electrocatalytic performance for MOR in alkaline medium. Uniformly decorated, sub-2 nm sized Pt MDs has synergistically oxidized the MeOH in association with the MoO3-Si solid-support hence, synergistic catalytic activity has been achieved. Present facile approach can be extended for fabricating variety of highly efficient Metal Oxide-Metal Nanocomposite for energy harvesting applications.

Synthesis of Novel Platinum Precursor and Its Application to Metal Organic Chemical Vapor Deposition of Platinum Thin Films

  • Lee, Sun-Sook;Lee, Ho-Min;Park, Min-Jung;An, Ki-Seok;Kim, Jin-Kwon;Lee, Jong-Heun;Chung, Taek-Mo;Kim, Chang-Gyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1491-1494
    • /
    • 2008
  • A novel platinum aminoalkoxide complex, Pt$(dmamp)_2$ has been prepared by the reaction of cis-$(py)_2PtI_2$ with two equivalents of Na(dmamp) (dmamp = 1-dimethylamino-2-methyl-2-propanolate). Single-crystal X-ray crystallographic analysis shows that the Pt(dmamp)2 complex keeps a square planar geometry with each two nitrogen atoms and two oxygen atoms having trans configuration. Platinum films have been deposited on TaN/ Ta/Si substrates by metal organic chemical vapor deposition (MOCVD) using Pt$(dmamp)_2$. As-deposited platinum thin films did not contain any appreciable amounts of impurities except a little carbon. As the deposition temperature was increased, the films resistivity and deposition rate increased. The electrical resistivity (13.6 $\mu\Omega$cm) of Pt film deposited at 400 ${^{\circ}C}$ is a little higher than the bulk value (10.5 $\mu\Omega$cm) at 293 K. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and atomic force microscopy.

Effect of Pt-Co/C Cathode Catalyst on Electrochemical Durability of Membrane in PEMFC (PEMFC에서 Pt-Co/C Cathode 촉매가 고분자막의 전기화학적 내구성에 미치는 영향)

  • Sohyeong Oh;Dong Geun Yoo;Myoung Hwan Kim;Ji Young Park;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.189-195
    • /
    • 2023
  • As a PEMFC (Polymer Exchange Membrane Fuel Cell) cathode catalyst, Pt-Co/C has recently been widely used because of its improved durability. In a fuel cell, electrodes and electrolytes have a close influence on each other in terms of performance and durability. The effect on the electrochemical durability of the electrolyte membrane when Pt-Co/C was replaced in the Pt/C electrode catalyst was studied. The durability of Pt-Co/C MEA (Membrane Electrode Assembly) was higher than that of Pt/C MEA in the electrochemical accelerated degradation process of PEMFC membrane. As a result of analyzing the FER (Fluorine Emission Rate) and hydrogen permeability, it was shown that the degradation rate of the membrane of Pt-Co/C MEA was lower than that of Pt/C MEA. In the OCV (Open Circuit Voltage) holding process, the rate of decrease of the active area of the Pt-Co/C electrode was lower than that of the Pt/C electrode, and the amount of Pt deposited on the membrane was smaller in Pt-Co/C MEA than in Pt/C MEA. Pt inside the polymer membrane deteriorates the membrane by generating radicals, so the degradation rate of the membrane of Pt/C MEA with a high Pt deposition rate was higher than Pt-Co/C MEA. When the Pt-Co/C catalyst was used, the electrode durability was improved, and the amount of Pt deposited on the membrane was also reduced, thereby improving the electrochemical durability of the membrane.

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok;Jung, Yong-Ju;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.213-216
    • /
    • 2009
  • The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF

Deposition Characteristics of Lead Titanate Films on $RuO_2$ and Pt Substrates Fabricated by Chemical Vapor Deposition ($RuO_2$ 및 Pt 기판에서 $PbTiO_3$박막의 화학기상 증착특성에 관한 연구)

  • Jeong, Su-Ok;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.282-289
    • /
    • 2000
  • $PbTiO_3$ films were fabricated by electron cyclotron resonance plasma enhanced chemical vapor deposition(ECR-PECVD). Deposition characteristics of $PbTiO_3$films on $RuO_2$ and Pt substrates were investigated with varying the flow rate of metalorganic source and substrate temperature. The residence time of Pb-oxide molecules in much longer on $RuO_2$ than on Pt substrate, while the perovskite nucleation is more difficult on $RuO_2$ than on Pt substrate. Therefore, the process conditions to obtain the single perovskite $PbTiO_3$ phase are more restricted on $RuO_2$ than on Pt substrates. An introduction of Ti-oxide seed layer increases perovskite nucleation density and thus enlarges the process window to obtain the single perovkite phase. The introduction of Ti-oxide seed layer make the PZT film that Ti-components of $PbTiO_3$ are partially substituted with Zr atoms have single perovskite phase for the wide range of Zr/(Zr+Ti) concentration ratios.

  • PDF

Electrical Properties and Fabrication of Ferroelectric (PZT (PLD를 이용한 강유전체(PZT, PST, PT)/YBCO 박막 구조의 제작과 전기적인 특성에 관한 연구)

  • Kim, Jung-Hwan;Lee, Jae-Hyung;Moon, Byung-Moo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.541-545
    • /
    • 1998
  • (PZT, PST, PT)/ YBCO structured have been grown on single crystal $LaAlO_3$ using in-situ Nb:YAG pulsed laser deposition technique. The optimum conditions of fabrication for high quality films have been established under various oxygen pressure. TBCO was used as a metallic electrode for polarizing ferroelectric thin fillms. Lattice mismatch of these materials were found to be with in 3%. As a result XRD patterns and rocking curves, (PZT, PST, PT)/ YBCO multiayered thin films on $LaAlO_3$ substrates showed preferred orientation to c-axis. For invastigation on electrical properties of ferroelectric thin films, remanent polaiztion $P_r$ and coercive field $E_c$ were measured for three samples. At each optimum condition, they showed the values of P_r=60 \mu C/cm^2 and E_c=240kV/ cm for PT, 30\mu C/cm^2 and 105kV/cm for PZT, 1.5\mu C/cm^2$ and 15kV/cm for PST. Frequency dependence of dielectric properties of ferroelectric thin fillms was also investigated. As a result, it showed the frequency dependence was relatively small in the range of 10Hz~10kHz.

  • PDF

Preparation and characterization of$PbTiO_3$ thin films deposited on Si(100) substrate by MOCVD (MOCVD 법에 의해 Si(100) 기판 위에 제조된 $PbTiO_3$ 박막의 증착 특성)

  • 김종국;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.34-38
    • /
    • 1999
  • $PbTiO_3$(PT)thin films were prepared by simultaneous of $TiO_2$ and PbO on Si(100) substrate using metaloganic chemical vapor deposition (MOCVD). Titanium tetra-isopropoxide (TTIP) and $Pb(TMHD)_2$were used as source materials. As evaporation temperature and flow rate of TTIP were examined the crystal structure of PT thin films using XRD with setting deposition temperature, flow rate of Pb, and total flow rate of $520^{\circ}C$, 30 sccm, and 750 sccm, respectively. PT thin films could be deposited under 48~$50^{\circ}C$ and 18~22sccm of evaporation temperature and flow rate of TTIP, respectively. It was found that lead, oxygen, and silicon diffused at the iaterface between the film and the substrate.

  • PDF