• 제목/요약/키워드: Deposition flux

검색결과 248건 처리시간 0.029초

외부증착(OVD)공정에 관한 열전달과 입자부착에 관한 연구 (A Study of Heat Transfer and Particle Deposition During Outside Vapor Deposition Process)

  • 송영휘;최만수;강신형
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.193-202
    • /
    • 1994
  • A study of heat transfer and particle deposition has been made numerically for outside vapor deposition process. Heat conduction through the two layer cylinder which consists of the target and the deposited layer is included together with heat transfer and gas jet flow onto the cylinder from the torch. Temperature and flow fields have been obtained by an iterative method and thermophoretic particle deposition has been studied. Of particlar interests are effects of the thickness of the deposited layer, the torch speed and the rotation speed of the cylinder on particle deposition flux and efficiency. Effects of buoyancy, variable properties and tube rotation are included.

Atmosphere-forest Exchange of Ammoniacal Nitrogen in a Subalpine Deciduous Forest in Central Japan during a Summer Week

  • Hayashi, Kentaro;Matsuda, Kazuhide;Takahashi, Akira;Nakaya, Ko
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권2호
    • /
    • pp.134-143
    • /
    • 2011
  • The present study aimed to investigate the diurnal variations in air concentrations and exchange fluxes of ammoniacal nitrogen ($NH_x$: ammonia ($NH_3$) and particulate ammonium) in a subalpine deciduous forest in central Japan during a week in summer. The $NH_3$ concentrations ($0.50\;{\mu}g\;N\;m^{-3}$ on average) showed a clear circadian variation, i.e., high and low in the daytime and nighttime, respectively. The concentration of particulate ammonium in the coarse fractions was extremely low, whereas that for the PM2.5 fraction was relatively high $0.55\;{\mu}g\;N\;m^{-3}$ on average). The main inorganic ion components of PM2.5 at the study site were ammonium and sulfate. The exchange fluxes of $NH_x$ were bidirectional. Both the maximum and minimum values occurred in the daytime, i.e., $0.39\;mg\;N\;m^{-2}\;hr^{-1}$ of downward flux and $0.11\;mg\;N\;m^{-2}\;hr^{-1}$ of upward flux for $NH_3$ and $0.25\;mg\;N\;m^{-2}\;hr^{-1}$ of downward flux and $0.13\;mg\;N\;m^{-2}\;hr^{-1}$ of upward flux for PM2.5 ammonium. The exchange fluxes of $NH_x$ at night could be considered as zero. The mean deposition velocity during the research period was almost zero for both $NH_3$ and PM2.5 ammonium. The atmosphere-forest exchange of $NH_x$ in the forest during the study period was balanced. The remarkably large deposition of $NH_x$ was attributable to meteorological events such as showers the night before that thoroughly washed the forest canopy and subsequent clear skies in the morning, which enhanced convection. The cleaning effect of rainfall and the rapid change in convection in the early morning should be monitored to evaluate and generalize the gas and particle exchange in a forest.

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E3호
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

Estimation of Atmospheric Deposition Velocities and Fluxes from Weather and Ambient Pollutant Concentration Conditions : Part I. Application of multi-layer dry deposition model to measurements at north central Florida site

  • Park, Jong-Kil;Eric R. Allen
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권1호
    • /
    • pp.31-42
    • /
    • 2000
  • The dry deposition velocities and fluxes of air pollutants such as SO2(g), O3(g), HNO3(g), sub-micron particulates, NO3(s), and SO42-(s) were estimated according to local meteorological elements in the atmospheric boundary layer. The model used for these calculations was the multiple layer resistance model developed by Hicks et al.1). The meteorological data were recorded on an hourly basis from July, 1990 to June, 1991 at the Austin Cary forest site, near Gainesville FL. Weekly integrated samples of ambient dry deposition species were collected at the site using triple-fiter packs. For the study period, the annual average dry deposition velocities at this site were estimated as 0.87$\pm$0.07 cm/s for SO2(g), 0.65$\pm$0.11 cm/s for O3(g), 1.20$\pm$0.14cm/s for HNO3(g), 0.0045$\pm$0.0006 cm/s for sub-micron particulates, and 0.089$\pm$0.014 cm/s for NO3-(s) and SO42-(s). The trends observed in the daily mean deposition velocities were largely seasonal, indicated by larger deposition velocities for the summer season and smaller deposition velocities for the winter season. The monthly and weekly averaged values for the deposition velocities did not show large differences over the year yet did show a tendency of increased deposition velocities in the summer and decreased values in the winter. The annual mean concentrations of the air pollutants obtained by the triple filter pack every 7 days were 3.63$\pm$1.92 $\mu\textrm{g}$/m3 for SO42-, 2.00$\pm$1.22 $\mu\textrm{g}$/m-3 for SO2, 1.30$\pm$0.59 $\mu\textrm{g}$/m-3 for HNO3, and 0.704$\pm$0.419 $\mu\textrm{g}$/m3 for NO3-, respectively. The air pollutant with the largest deposition flux was SO2 followed by HNO3, SO42-(S), and NO3-(S) in order of their magnitude. The sulfur dioxide and NO3- deposition fluxes were higher in the winter than in the summer, and the nitric acid and sulfate deposition fluxes were high during the spring and summer.

  • PDF

산성우모델에 의한 산성강하물의 수송에 관한 연구 - 동아시아 및 우리나라 중부지방의 대기오염물질 시공간분포 - (A Modeling Study on the Transport of Acid Pollutant by Regional Acid Deposition Model -Spacial Pattern and Variation of Air Pollutants on Eastern Asia and Central Part of Korea-)

  • 이종범;조창래;변대원
    • 환경영향평가
    • /
    • 제8권1호
    • /
    • pp.1-16
    • /
    • 1999
  • The acid deposition and photochemical modeling study was performed on the Eastern Asia using Regional Acid Deposition Model(RADM). The results of this study show that horizontal distribution of $SO_2$, concentration and dry deposition flux was higher in Beking, Shanghai and central part of Korea. However distribution pattern of sulfate and $O_3$ concentration calculated by RADM were not similar to emission pattern. In daytime, $SO_2$, sulfate and $O_3$ were mixed to whole PBL but in nighttime because of inversion layer these pollutants were suppressed to lower level.

  • PDF

대기 중 질소산화물의 건식침적 특성 (Characteristics of Atmospheric Dry Deposition of Nitrogen-containing Compounds)

  • 이승묵;한영지;정장표
    • 대한환경공학회지
    • /
    • 제22권4호
    • /
    • pp.775-784
    • /
    • 2000
  • 본 연구는 그리스 대체표면을 사용한 건식침적판(knife-leading-edge surrogate surface)과 물표면 채취기(water surface sampler)를 이용하여 질산염(입자상, 가스상)의 전식침적량을 직접 측정하였다. 평균 가스상 건식침적량($8.3mg/m^2/day$) 이 입자상 건식침적량($3.0mg/m^2/day$)에 비해 훨씬 큰 값을 나타내었다. 직접 측정한 질산염의 가스상 건식침적량과 대기 중 질산($HNO_3$) 농도 사이의 선형회귀분석을 통하여 질산의 가스상 질량전달계수률 구하였다. 이와 같이 구한 질산의 질량전달계수는 이산화황($SO_2$)의 질량전달계수의 약 2배가 되는 값을 보여주었다. 특히, 오존주의보시에는 Graham의 확산법칙을 사용하여 이산화황의 질량전달계수로부터 계산한 질산의 질량전달계수와 대기 중 질산 농도와의 곱으로 추정된 질산염의 가스상 건식침적량에 비해, 측정된 건식침적량이 훨씬 높은 값을 나타내는 특이한 현상을 보였다. 이 결과는 질산 외의 가스상 화학종이 질소산화물의 가스상 건식침적량에 영향을 미친다는 사실을 나타내고 있다. 이론적인 계산결과에 의하면 아질산($HNO_2$) 과 PAN이 질소산화물의 가스상 건식침적량에 기여할 가능성이 높은 것으로 나타났다.

  • PDF

Preliminary Estimation of Particle Dry Deposition Fluxes along Coastal Area of Jeju Island

  • Lee, Ki-Ho;Hu, Chul-Goo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_2호
    • /
    • pp.55-63
    • /
    • 2001
  • This work employs two models to quantify the size-segregated dry deposition fluxes of particle-bound N $O_3$$^{[-10]}$ , N $H_4$$^{+}$, and S $O_4$$^{2-}$ along the coastal area of Jeju Island based on the chemical composition data of aerosol collected during the springtime of 1995. The two approaches produced fairly comparable results, despite the feature differences between the two models. The modelling results obtained indicated that the mean dry deposition velocity was around 0.4 cm $s^{-1}$ for N $O_3$$^{[-10]}$ , 0.2 cm $s^{-1}$ for N $H_4$$^{+}$, and 0.3 cm $s^{-1}$ for S $O_4$$^{2-}$, and the dry deposition flux varied between 371~1368 $\mu\textrm{g}$ $m^{-2}$ da $y^{-1}$ for nitrate, 28~625 $\mu\textrm{g}$ $m^{-2}$ da $y^{-1}$ for ammonium, and 957~6088 $\mu\textrm{g}$ $m^{-2}$ da $y^{-1}$ for sulfate. Although difficulties in collecting giant and/or fine particles limited the understanding of the mass size distribution of particles and thus the ability to refine estimates of the dry deposition flux for the particulate matter, both models were still able to offer sufficient realism to explain the features of the available data collected from the coastal area of Jeju Island.and.

  • PDF