• Title/Summary/Keyword: Deposition chamber

Search Result 340, Processing Time 0.032 seconds

Ion beam induced surface modifications of sapphire and gold film deposition: studies on the adhesion enhancement and mechanisms (Ion Beam을 이용한 사파이어($Al_2O_3$) 표면개질 및 금(Au) 박막증착: 접합성 향상 및 접학기구에 대한 연구)

  • 박재원;이광원;이재형;최병호
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.514-518
    • /
    • 1999
  • Gold (Au) is not supposed to react with sapphire(single crystalline ) under thermodynamic equillibrium, therefore, a strong adhesion between these two dissimilar materials is not expected. However, pull test showed that the gold film sputter-deposited onto annealed and pre-sputtered sapphire exhibited very strong adhesion even without post-deposition annealing. Strongly and weakly adhered samples as a result of the pull testing were selected to investigate the adhesion mechanisms with Auger electron spectroscopy. The Au/ interfaces were analyzed using a new technique that probes the interface on the film using Auger electron escape depth. It revealed that one or two monolayers of Au-Al-O compound formed at the Au/Sapphire interface when AES in the UHV chamber. It showed that metallic aluminum was detected on the surface of sapphire substrates after irradiating for 3 min. with 7keV Ar+ -ions. These results agree with TRIM calculations that yield preferential ion-beam etching. It is concluded that the formation of Au-Al-O compound, which is responsible for the strong metal-ceramic bonding, is due to ion-induced cleaning and reduction of the sapphire surface, and the kinetic energy of depositing gold atoms, molecules, and micro-particles as a driving force for the inter-facial reaction.

  • PDF

Superconducting properties of SiC-buffered-MgB2 tapes

  • Putri, W.B.K.;Kang, B.;Duong, P.V.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.1-4
    • /
    • 2015
  • Production of $MgB_2$ film on metallic Hastelloy with SiC as the buffer layer was achieved by means of hybrid physical-chemical vapor deposition technique, whereas SiC buffer layers with varied thickness of 170 and 250 nm were fabricated inside a pulsed laser deposition chamber. Superconducting transition temperature and critical current density were verified by transport and magnetic measurement, respectively. With SiC buffer layer, the reduced delaminated area at the interface of $MgB_2$-Hastelloy and the slightly increased $T_c$ of $MgB_2$ tapes were clearly noticed. It was found that the upper critical field, the irreversibility field and the critical current density were reduced when $MgB_2$ tapes were buffered with SiC buffer layer. Clarifying the mechanism of SiC buffer layer in $MgB_2$ tape in affecting the superconducting properties is considerably important for practical applications.

Characteristics of Defects in SiOx Thin films on Ethylene Terephthalate by High-temperature E-beam Deposition (고온 전자빔 증착에 의한 Ethylene Terephthalate상의 SiOx 박막의 특성 평가)

  • Han Jin-Woo;Kim Young-Hwan;Kim Jong-Hwan;Seo Dae-Shlk;Moon Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • In this paper, we investigated the characterization of silicon oxide(SiOx) thin film on Ethylene Terephthalate(PET) substrates by e-beam deposition for transparent barrier application. The temperature of chamber increases from $30^{\circ}C$ to $110^{\circ}C$, the roughness increase while the Water vapor transmission rate (WVTR) decreases. Under these conditions, the WVTR for PET can be reduced from a level of $0.57 g/m^2/day$ (bare subtrate) to $0.05 g/m^2/day$ after application of a 200-nm-thick $SiO_2$ coating at 110 C. A more efficient way to improve permeation of PET was carried out by using a double side coating of a 5-${\mu}m$-thick parylene film. It was found that the WVTR can be reduced to a level of $-0.2 g/m^2/day$. The double side parylene coating on PET could contribute to the lower stress of oxide film, which greatly improves the WVTR data. These results indicates that the $SiO_2$ /Parylene/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

The Effects of Oxygen Partial Pressure and Post-annealing on the Properties of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 특성에 미치는 산소분압 및 후속열처리의 영향)

  • Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.304-308
    • /
    • 2012
  • Transparent thin film transistors (TTFT) were fabricated using the rf magnetron sputtered ZnO-$SnO_2$ films as active layers. A ceramic target whose Zn atomic ratio to Sn is 2:1 was employed for the deposition of ZnO-$SnO_2$ films. To study the post-annealing effects on the properties of TTFT, ZnO-$SnO_2$ films were annealed at $200^{\circ}C$ or $400^{\circ}C$ for 5 min before In deposition for source and drain electrodes. Oxygen was added into chamber during sputtering to raise the resistivity of ZnO-$SnO_2$ films. The effects of oxygen addition on the properties of TTFT were also investigated. 100 nm $Si_3N_4$ film grown on 100 nm $SiO_2$ film was used as gate dielectrics. The mobility, $I_{on}/I_{off}$, interface state density etc. were obtained from the transfer characteristics of ZnO-$SnO_2$ TTFTs.

The High Efficiency of Amorphous-Si Solar Cells Prepared by Photo-CVD System (광(光) CVD 법(法)에 의한 a-Si 태양전지(太陽電池)의 고효율화에 관한 연구(硏究))

  • Kim, Tae-Seoung
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.46-53
    • /
    • 1985
  • Hydrogenated amorphous silicon solar cells which are fabricated by photo-chemical vapor deposition (photo-CVD) system has been investigated. In the photo-CVD system which consists of three separate reaction chambers, low-pressure mercury lamp has been used as a light source. The main reactant ($Si_2H_6/He$) gases which are premixed with a small amount of mercury vapor in a mercury-vaporizer kept at $50^{\circ}C$ have been used. Using $C_2H_2$ and $SiH_2(CH_3)_2$ as the carbon source, p-type wide band gap a-SiC:H films have been obtained. The result has been found that the undoped layers of the pin/substrate solar cells are influenced by the residual impurities, such as phosphorus and boron during the deposition process. By minimizing the effect of the impurities in the i-layer and optimizing conditions at the p-layer and p/i interface, the energy conversion efficiency of 9.61 % under AM-1 ($100mW/Cm^2$) has been achieved for pin/substrate solar cells illuminated through their p-layers, using the three separate reaction chamber apparatus. It is expected that a-SiC:H solar cells with the energy conversion efficiency over 10% have been fabricated by Photo-CVD method.

  • PDF

ALD와 PEALD 공정에서의 파티클 형성과 박막 특성 비교

  • Gang, Go-Ru;Kim, Jin-Tae;Cha, Deok-Jun;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.253-253
    • /
    • 2013
  • 본 실험에서는 전구체(Precursor)로 TMA (Tris methyl Aluminum)를 사용한 ALD (Atomic Layer Deposition)와 PEALD (Plasma Enhanced Atomic Layer Deposition) 공정 중 발생하는 입자(particle)를 ISPM (In-Situ Particle Mornitor)로 관찰하였다. ALD과 PEALD 공정에서 Al2O3 박막을 형성하기 위해서 반응가스(Reactant)로 각 각 H2O와 O2 plasma를 사용하였다. 이러한 차이로 인해서 진공 챔버(Vacuum Chamber) 안에서의 각기 다른 매커니즘에 의해서 Al2O3의 박막이 형성된다. 또한 공정 중 발생할 수 있는 파티클(Particle) 생성 매커니즘의 차이점을 가진다. ALD의 경우 전구체와 반응가스 사이에 충분한 purge가 이루어지지 않거나 dead zone이 존재할 경우 라인과 챔버 상에 잔류한 전구체와 반응가스에 의해서 불완전한 반응물로 파티클이 생성될 수 있다. 반면 PEALD 경우는 반응가스(Reactant)로 O2 plasma를 극부(localization)적으로 형성하여 박막을 형성하므로 반응가스의 잔류의 영향은 없으나 고에너지의 플라즈마에 의해서 물리적 영향에 의한 파티클이 생성될 수 있다. 공정 중 발생하는 입자(Particle)은 수율 감소와 박막의 물성에 영향을 미칠 수 있다. 그러므로 두 공정 중 발생하는 파티클을 ISPM으로 관찰하였고, 각 공정에서 형성된 박막의 두께 균일도, 표면의 형상(morphology), 화학적 조성 및 전기적 특성을 측정하였다. 이를 통해서 ALD와 PEALD의 파티클과 박막특성을 비교하였다.

  • PDF

A Method for Improving Resolution and Critical Dimension Measurement of an Organic Layer Using Deep Learning Superresolution

  • Kim, Sangyun;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.153-164
    • /
    • 2018
  • In semiconductor manufacturing, critical dimensions indicate the features of patterns formed by the semiconductor process. The purpose of measuring critical dimensions is to confirm whether patterns are made as intended. The deposition process for an organic light emitting diode (OLED) forms a luminous organic layer on the thin-film transistor electrode. The position of this organic layer greatly affects the luminescent performance of an OLED. Thus, a system for measuring the position of the organic layer from outside of the vacuum chamber in real-time is desired for monitoring the deposition process. Typically, imaging from large stand-off distances results in low spatial resolution because of diffraction blur, and it is difficult to attain an adequate industrial-level measurement. The proposed method offers a new superresolution single-image using a conversion formula between two different optical systems obtained by a deep learning technique. This formula converts an image measured at long distance and with low-resolution optics into one image as if it were measured with high-resolution optics. The performance of this method is evaluated with various samples in terms of spatial resolution and measurement performance.

Infrared absorbance of the Au-black deposited under nitrogen gas-filled low vacuum condition (질소가스 분위기의 저진공으로 증착된 Au-black의 적외선 흡수도)

  • O, Gwang-Sik;Kim, Dong-Jin;Kim, Jin-Seop;Lee, Jeong-Hui;Lee, Yong-Hyeon;Lee, Jae-Sin;Han, Seok-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.13-21
    • /
    • 2000
  • Au-black for the application of the long wavelength infrared absorber has been prepared by evaporating Au under nitrogen gas-filled low vacuum condition. Characteristics of the deposited Au-black were carefully investigated through structural analysis, infrared absorbance measurement, and patterning of the layer, all of which are dependent on the deposition condition. High density of micro-cavity that trapped infrared were obtained, and infrared absorbance in the wavelength range from 3 $\mu\textrm{g}$ to 14 $\mu\textrm{g}$ was found to be about 90% when the Au-black layer was produced under the deposition condition of mass Per area of about 600 $\mu\textrm{g}$/cm$^{2}$ and chamber pressure of above 1 Torr. Photoresist lift-off process could be performed to pattern the Au-black, of which mass per area was below 900 $\mu\textrm{g}$/cm/ sup 2/. In view of absorbance, heat capacity, and pattern formation, the deposition condition of chamber pressure of about 1 Tow and mass per area of about 600$\mu\textrm{g}$/cm$^{2}$ was most adequate for preparing the Au-black as an infrared absorber.

  • PDF

HIPIMS Arc-Free Reactive Deposition of Non-conductive Films Using the Applied Material ENDURA 200 mm Cluster Tool

  • Chistyakov, Roman
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.96-97
    • /
    • 2012
  • In nitride and oxide film deposition, sputtered metals react with nitrogen or oxygen gas in a vacuum chamber to form metal nitride or oxide films on a substrate. The physical properties of sputtered films (metals, oxides, and nitrides) are strongly influenced by magnetron plasma density during the deposition process. Typical target power densities on the magnetron during the deposition process are ~ (5-30) W/cm2, which gives a relatively low plasma density. The main challenge in reactive sputtering is the ability to generate a stable, arc free discharge at high plasma densities. Arcs occur due to formation of an insulating layer on the target surface caused by the re-deposition effect. One current method of generating an arc free discharge is to use the commercially available Pinnacle Plus+ Pulsed DC plasma generator manufactured by Advanced Energy Inc. This plasma generator uses a positive voltage pulse between negative pulses to attract electrons and discharge the target surface, thus preventing arc formation. However, this method can only generate low density plasma and therefore cannot allow full control of film properties. Also, after long runs ~ (1-3) hours, depends on duty cycle the stability of the reactive process is reduced due to increased probability of arc formation. Between 1995 and 1999, a new way of magnetron sputtering called HIPIMS (highly ionized pulse impulse magnetron sputtering) was developed. The main idea of this approach is to apply short ${\sim}(50-100){\mu}s$ high power pulses with a target power densities during the pulse between ~ (1-3) kW/cm2. These high power pulses generate high-density magnetron plasma that can significantly improve and control film properties. From the beginning, HIPIMS method has been applied to reactive sputtering processes for deposition of conductive and nonconductive films. However, commercially available HIPIMS plasma generators have not been able to create a stable, arc-free discharge in most reactive magnetron sputtering processes. HIPIMS plasma generators have been successfully used in reactive sputtering of nitrides for hard coating applications and for Al2O3 films. But until now there has been no HIPIMS data presented on reactive sputtering in cluster tools for semiconductors and MEMs applications. In this presentation, a new method of generating an arc free discharge for reactive HIPIMS using the new Cyprium plasma generator from Zpulser LLC will be introduced. Data (or evidence) will be presented showing that arc formation in reactive HIPIMS can be controlled without applying a positive voltage pulse between high power pulses. Arc-free reactive HIPIMS processes for sputtering AlN, TiO2, TiN and Si3N4 on the Applied Materials ENDURA 200 mm cluster tool will be presented. A direct comparison of the properties of films sputtered with the Advanced Energy Pinnacle Plus + plasma generator and the Zpulser Cyprium plasma generator will be presented.

  • PDF

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF