• Title/Summary/Keyword: Deposition and erosion

Search Result 213, Processing Time 0.032 seconds

Analysis of changes in cross section and flow rate due to vegetation establishment in Naeseong stream (내성천 하도 내 식생활착에 의한 단면 및 유량변화 분석)

  • Lee, Tae Hee;Kim, Su Hong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • In the present study, hydrologic data and topographical data from 2010 to 2019 were collected from three gauging stations placed in the watershed of Naeseong stream to determine changes and rates of changes in rainfall, water level & mean velocity, and water level & discharge, together with changes in rates of erosion and deposition at cross-sections of the river. Besides, effects of regulated and non-regulated rivers according to the presence of artificial regulation of flow rate of the river via artificial structure located at Seo stream (Yeongju si (Wolhogyo) station), the tributary free from construction of dams, were compared and analyzed. Results of analyses conducted in the present study revealed vegetational establishment and landforming due to increasing area of vegetational sandbar evolved in the flood plain (intermediate- or high- water level) by the drought sustained from 2013 to 2015. Continuous erosion of river bed was appeared because of narrowed flow area with low water level and increased velocity and tractive force on river bed.

Numerical Analysis of Flow and Bed Changes for Selecting Optimized Section of Buried Water Pipeline Crossing the River (하천을 횡단하는 도수관로의 최적 매설구간 선정을 위한 흐름 및 하상변동 수치모의)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1756-1763
    • /
    • 2014
  • A water pipeline buried under the riverbed could be exposed by bed erosion, therefore safe crossing sections should be analyzed for preventing damages due to the exposure of pipelines. In this study, flow and bed changes have been simulated using a two-dimensional numerical model for selecting the optimized section of pipeline crossing in the Geum River. As a result of simulation with the 20-year recurrence flood, sediment deposition has been distributed overall in the channel and bed erosion over 2 m has occurred near bridge piers. For the extreme flood simulation, the channel bed near the bridge piers has been eroded down to the buried depth. Therefore, within 140 m upstream of the bridge piers, bed erosion affects a buried pipeline in safety due to bridge pier effects and the crossing section over 150 m upstream of bridge piers is selected as a safe zone of a water pipeline.

Variations of Sediment Textural Parameters and Topography around Gangneung Harbor after the Completion of Harbor Construction (강릉항 완공 후 주변해역의 퇴적물 조직변수와 지형의 변화)

  • Oh, Jae-Kyung;Bang, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.120-135
    • /
    • 2013
  • To investigate the changes in depositional environment around Gangneung Harbor, we analyzed the surface sediment textural parameters and topography data collected five times from February 2007 to February 2009. In the study area, sediments were mainly composed of sand and its sediment size became finer at offshore sites. During summer time, however, the sand grains became coarser than winter season near Namhangjin Beach, inside the harbor, and offshore areas. On the other hand, the grain size of Anmok Beach showed a gradual finer trend with time. Compared with the previous studies conducted before the completion of Gangneung Harbor construction, the mean grain size became finer on Anmok Beach, while it was coarser on Namhangjin Beach. The bathymetric changes observed over a 2-year period showed predominant erosion in the area of 5 to 10 m water depths and deposition in 2 to 5 m water depths. The shallower area less than 2 m water depths showed an alternating trend and yet slightly more dominant erosion process. The sediment textural parameters and the distribution of erosion and deposition have changed continuously. Results imply that such changes show long-term trends as well as seasonal variations in which the trend may have been formed after the completion of Gangneung Harbor construction.

Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin (위성영상 및 항공사진을 이용한 해안선 변화 모니터링 : 울진군 죽변면 연안을 대상으로)

  • Eom, Jin-Ah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.571-580
    • /
    • 2010
  • Coastal shoreline movement due to erosion and deposition is a major concern for coastal zone management. Shoreline is changed by nature factor or development of coastal. Change of shoreline is threatening marine environment and destroying. Therefore, we need monitoring of shoreline change with time series analysis for coastal zone management. In this study, we analyzed the shoreline change using airphotograph, LiDAR and satellite imagery from 1971 to 2009 in Uljin, Gyeongbuk, Korea. As a result, shoreline near of the nuclear power plant show linear pattern in 1971 and 1980, however the pattern of shoreline is changed after 2000. As a result of long-term monitoring, shoreline pattern near of the nuclear power plant is changed by erosion toward sea. The pattern of shoreline near of KORDI until 2003 is changed due to deposition toward sea, but the new pattern toward land is developed by erosion from 2003 to 2009. The shoreline is changed by many factors. However, we will guess that change of shoreline within study area is due to construction of nuclear power plant. In the future work, we need sedimentary and physical studies.

Numerical analysis on erosion process of replenished sediment on rock bed

  • Takebayashi, Hiroshi;Yoshiiku, Musashi;Shiuchi, Makoto;Yamashita, Masahiro;Nakata, Yasusuke
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.17-17
    • /
    • 2011
  • As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. However, most of them can treat movable bed only and cannot be applied to the bed deformation process of sediment on rocks. If the friction angle between the sediment and the bed surface is assumed to be the same as the friction angle between the sediment and the sediment, sediment transport rate must be smaller without sediment deposition layer on the rocks. As a result, the reproduced bed geometry is affected very well. In this study, non-equilibrium transport process of non-cohesive sediment on rigid bed is introduced into the horizontal two dimensional bed deformation model and the model is applied to the erosion process of replenished sediment on rock in the Nakagawa, Japan. Here, the Japanese largest scale sediment augmentation has been performed in the Nakagawa. The results show that the amounts of the eroded sediment and the remained sediment reproduced by the developed numerical model are $56300m^3$ and $26800m^3$, respectively. On the other hand, the amounts of the eroded sediment and the remained sediment measured in the field after the floods are $56600m^3$ and $26500m^3$, respectively. The difference between the model and field data is very small. Furthermore, the bed geometry of the replenished sediment after the floods reproduced by the developed model has a good agreement with the measured bed geometry after the floods. These results indicate that the developed model is able to simulate the erosion process of replenished sediment on rocks very well. Furthermore, the erosion speed of the replenished sediment during the decreasing process of the water discharge is faster than that during the increasing process of the water discharge. The replenished sediment is eroded well, when the top of the replenished sediment is covered by the water. In general, water surface level is kept to be high during the decreasing process of the discharge during floods, because water surface level at the downstream end is high. Hence, it is considered that the high water surface level during the decreasing process of the water discharge affects on the fast erosion of the replenished sediment.

  • PDF

Topographical Changes in Torrential Stream After Dredging in Erosion Control Dam - Using Terrestrial LiDAR Data - (사방댐 준설이 계류의 지형변화에 미치는 영향 - 지상 LiDAR 자료를 이용하여 -)

  • Seo, Junpyo;Woo, Choongshik;Lee, Changwoo;Kim, Kyongha;Lee, HeonHo
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.392-401
    • /
    • 2014
  • This research was carried out to understand the impact of mountainous torrent on topographical change of slope and sediment volume within a deposit line by dredging of soil erosion control dam. Terrestrial LiDAR surveys were conducted at dredged and non-dredged sites. Terrestrial LiDAR has an advantage on detecting topographical changes easily without demanding workmanship and technical skill for users. The distribution of erodible slope ($20^{\circ}-40^{\circ}$) was higher in non-dredged site than that of dredged site. However, the distribution was higher in dredged site than that of non-dredged site after rainy season. Erosion and deposition appeared regularly in a dredged site, but those occurred irregularly in the non-dredged site. The inflow of soil per square meter was 1.7 times higher in dredged site than that of non-dredged site after rainy season. The difference of rainfall in each site did not affect to soil erosion. The distribution of erodible slope was increased in dredged site than that of non-dredged site after rainy season due to inflow of soil from upper stream caused by dredging.

Geomorphological Properties and Changes of Goreabul Sand Beach in Yeongdeok (영덕 고래불 모래해안의 지형 특성과 변화)

  • Bang, Hyun Ju;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.83-92
    • /
    • 2011
  • The properties and changes of geomorphic relief and coastal deposits were analyzed at Goreabul sand beach in Yeongdeok-gun, the largest that in east coast of Kyungsangbuk-do Province. As the result of grain size analysis, in almost season except summer, the sands mainly deposited in Goraebul sand beach because longshore current drift northward contrary to Gangwon-do east coast, and summer longshore current is weak or change direction to south ward. Sand beach mostly came form erosion owing to typoon and storm and was deposit more coarse sand in the summer, and was produced deposition actively in the fall and winter. Front side of sand dune came from deposition on sand every season by sea breeze, especially in the winter.

Modeling of Fine Sediment Transport under Multiple Breakwaters of Surface-Piercing Type

  • Lee, J. L.;Oh, M. R.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.557-562
    • /
    • 2004
  • A surface-piercing barrier model is presented for understanding morphological development in the sheltered region and investigating the main factors causing the severe accumulation. Surface-piercing structures like vertical barriers, surface docks and floating breakwaters are recently favored from the point of view of a marine scenario since they do not in general partition the natural sea. The numerical solutions are compared with experimental data on wave profiles and morphological change rates within a rectangular harbor of a constant depth protected by surface-piercing thin breakwaters as a simplified problem. Our numerical study involves several modules: 1) wave dynamics analyzed by a plane-wave approximation, 2) suspended sediment transport combined with sediment erosion-deposition model, and 3) concurrent morphological changes. Scattering waves are solved by using a plane wave method without inclusion of evanescent modes. Evanescent modes are only considered in predicting the reflection ratio against the vertical barrier and energy losses due to vortex shedding from the lower edge of plate are taken into account. A new relationship to relate the near-bed concentration to the depth-mean concentration is presented by analyzing the vertical structure of concentration. The numerical solutions were also compared with experimental data on morphological changes within a rectangular harbor of constant water depth. Through the numerical experiments, the vortex-induced flow appears to be not ignorable in predicting the morphological changes although the immersion depth of a plate is not deep.

  • PDF

The Cu-CMP's features regarding the additional volume of oxidizer (산화제 배합비에 따른 연마입자 크기와 Cu-CMP의 특성)

  • Kim, Tae-Wan;Lee, Woo-Sun;Choi, Gwon-Woo;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.20-23
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing(CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical polishing(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commercial slurries pads, and post-CMP cleaning alternatives are discuss, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper deposition is a mature process from a historical point of view, but a very young process from a CMP perspective. While copper electro deposition has been used and studied for decades, its application to Cu damascene wafer processing is only now gaining complete acceptance in the semiconductor industry. The polishing mechanism of Cu-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper passivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF

A Study of Machining Optimization of Parts for Semiconductor Plasma Etcher (반도체 플라즈마 식각 장치의 부품 가공 연구)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.28-33
    • /
    • 2020
  • Plasma etching process employs high density plasma to create surface chemistry and physical reactions, by which to remove material. Plasma chamber includes silicon-based materials such as a focus ring and gas distribution plate. Focus ring needs to be replaced after a short period. For this reason, there is a need to find materials resistant to erosion by plasma. The developed chemical vapor deposition processing to produce silicon carbide parts with high purity has also supported its widespread use in the plasma etch process. Silicon carbide maintains mechanical strength at high temperature, it have been use to chamber parts for plasma. Recently, besides the structural aspects of silicon carbide, its electrical conductivity and possibly its enhanced life time under high density plasma with less generation of contamination particles are drawing attention for use in applications such as upper electrode or focus rings, which have been made of silicon for a long time. However, especially for high purity silicon carbide focus ring, which has usually been made by the chemical vapor deposition method, there has been no study about quality improvement. The goal of this study is to reduce surface roughness and depth of damage by diamond tool grit size and tool dressing of diamond tools for precise dimensional assurance of focus rings.