• 제목/요약/키워드: Depigmenting

검색결과 63건 처리시간 0.024초

Fermented Unpolished Black Rice (Oryza sativa L.) Inhibits Melanogenesis via ERK, p38, and AKT Phosphorylation in B16F10 Melanoma Cells

  • Sangkaew, Orrarat;Yompakdee, Chulee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1184-1194
    • /
    • 2020
  • Melanin is a major factor that darkens skin color as one of the defense systems to prevent the harmful effects of UV light. However, darkened skin from the localized or systemic accumulation of melanin is viewed in many cultures as an esthetic problem. Consequentially, searching for anti-melanogenic agents from natural sources is very popular worldwide. Previous screening of fermented rice products, obtained from various rice cultivars fermented with different sources of loog-pang (Thai traditional fermentation starter), revealed that the highest ability to reduce the melanin content in B16F10 melanoma cells was from unpolished black rice fermented with a defined starter mixture of microbes isolated from loog-pang E11. The aim of this study was to investigate the mechanism of the fermented unpolished black rice (FUBR) on the inhibition of melanogenesis in B16F10 melanoma cells. The strongest reduction of cellular melanin content was found in the FUBR sap (FUBRS). The melanin reduction activity was consistent with the significant decrease in the intracellular tyrosinase activity. The FUBRS showed no cytotoxic effect to B16F10 melanoma or Hs68 human fibroblast cell lines. It also significantly reduced the transcript and protein expression levels of tyrosinase, tyrosinase-related protein 1 (TYRP-1), TYRP-2, and microphthalmia-associated transcription factor. Furthermore, it induced a significantly increased level of phosphorylated ERK, p38 and Akt signaling pathways, which likely contributed to the negative regulation of melanogenesis. From these results, a model for the mechanism of FUBRS on melanogenesis inhibition was proposed. Moreover, these results strongly suggested that FUBRS possesses anti-melanogenesis activity with high potential for cosmeceutical application as a skin depigmenting agent.

특허분석으로 본 미백 연구의 기술 동향 (Trend of Depigmenting Research Based on Patent Analysis)

  • 김은기;이향복;이행병;이처영
    • 대한화장품학회지
    • /
    • 제33권4호
    • /
    • pp.209-217
    • /
    • 2007
  • 멜라닌은 UV로부터 피부를 보호하는 기능을 하며, 인종과 피부색을 결정하는 요인이다. 또한 미백 기능성 화장품개발의 주요 목표물이기도 하다. 최근 미와 관련된 화장품 시장이 급성장 하면서 미백효능 증대를 위한 연구들이 활발히 진행되고 있고, 보다 안전하고 효능을 극대화하기 위한 미백 기성화장품의 개발은 관심업계의 주력 분야이다. 또한 경쟁력을 확보하기 위한 수단으로 지속적인 특허 출원이 따르고 있다. 특허는 관련업계의 연구경향을 파악할 수 있는 중요한 문헌이기도 하다. 본 논문에서는 미백 기능성화장품과 관련된 특허 분석을 통하여 관련 업계의 미백연구기술의 개발 동향을 소개하고 미백 기능성 화장품의 개발 및 활성성분의 원료개발에 대한 이해를 돕고자 한다.

MSH에 의해 자극된 B16F10세포에서 사간(射干)의 멜라닌 합성 억제 효과 (Inhibitory Effect of Belamcandae Rhizoma on the Melanogenesis in MSH-stimulated B16F10 cells)

  • 김대성;성병곤;이장천;이부균;우원홍;임규상
    • 한방안이비인후피부과학회지
    • /
    • 제24권1호
    • /
    • pp.25-35
    • /
    • 2011
  • Objective : The present study was designed to assess the potential inhibitory activity of an ethanol extract of Belamcandae Rhizoma (EBR) on the alpha-melanocyte stimulating hormone (${\alpha}$-MSH)-induced melanogenesis signal pathway in B16F10 melanoma cells. Methods : Several experiments were performed in B16F10 melanoma cells. We studied tyrosinase activity, melanin content, cell-free tyrosinase activity and DOPA stain, and performed Western blots and RT-PCR for proteins and mRNA involved in melanogenesis. Results : ${\alpha}$-MSH-induced tyrosinase activity and melanin content were inhibited significantly by EBR. EBR markedly suppressed the protein expression level of tyrosinase in B16F10 melanoma cells. On the other hand, the expression of tyrosinase-related protein-1 (TRP-1) and -2 (TRP-2; DCT) were not affected by EBR. To elucidate the mechanism of the depigmenting property of EBR, we examined the involvement EBR in cAMP response element binding (CREB) protein phosphorylation and microphthalmia-associated transcription factor (MITF) signalling induced by ${\alpha}$-MSH. EBR did not regulate CREB phosphorylation and MITF expression by ${\alpha}$-MSH. Nevertheless, the mRNA expression of tyrosinase was significantly attenuated by EBR treatment without changes in the expression of TRP-1 and -2 mRNA. Conclusion : Our study suggested that EBR inhibits ${\alpha}$-MSH-induced melanogenesis by suppressing tyrosinase mRNA.

감초 물추출물의 멜라닌 형성 억제효과 (Inhibitory Effect on Melanogenesis of Radix Glycyrrhizae Water Extract)

  • 문연자;김진;임난영;이승연;곽섭;황충연;우원홍
    • 동의생리병리학회지
    • /
    • 제16권6호
    • /
    • pp.1230-1235
    • /
    • 2002
  • This study was conducted to evaluate the effects of Glycyrrhizae Radix water extract, known as depigmenting agent, on melanin biosynthesis in cellular level. The inhibitory effect of Glycyrrhizae Radix water extract on melanogenesis was identified by mushroom tyrosinase assay, To determine whether Glycyrrhizae Radix water extract suppress melanin synthesis in cellular level, B16 mouse melanoma cells were cultured in the presence of different concentrations of Glycyrrhizae Radix water extract. The maximum concentration of Glycyrrhizae Radix water extract that was not inhibitory to growth of the cells was 2 mg/ml. At that concentration, melanin synthesis was significantly inhibited without cytotoxicity after 5 days, compared with untreated cells. The treatment with Glycyrrhizae Radix water extract reduced tyrosinase and DOPAchrome tautomerase activity in a dose-dependent manner. These results suggest that the inhibitory effect of Glycyrrhizae Radix water extract on melanogenesis is due to the suppression of tyrosinase and DOPAchrome tautomerase activity.

감초수추출물이 HM3KO 세포의 멜라닌 생성에 미치는 영향 (Effect of Glycyrrhizae Radix Water Extract on the Melanogenesis of Human Melanoma Cell)

  • 임숙정;임난영;이성원;곽근신;안성훈;문연자;우원홍
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.368-373
    • /
    • 2003
  • This study was conducted to evaluate the effects of Glycyrrhizae Radix water extract, known as depigmenting agent, on melanin biosynthesis in the HM3KO human melanoma cells. The inhibitory effect of Glycyrrhizae Radix water extract on melanogenesis was identified by mushroom tyrosinase assay in vitro. To determine whether Glycyrrhizae Radix water extract suppress melanin synthesis in cellular level, HM3KO cells were cultured in the presence of different concentrations of Glycyrrhizae Radix water extract and the effects on cell proliferation, melanin contents and tyrosinase activity were examined after 3 days. Treatment with Glycyrrhizae Radix at various concentrations did not exhibit any change of cell viability, and increased the cell proliferation. And the water extract of Glycyrrhizae Radix inhibited melanin contents and tyrosinase activity in a dose-dependent manner, compared with untreated group. These results suggest that the inhibitory effect of Glycyrrhizae Radix water extract on melanogenesis is due to the suppression of tyrosinase in HM3KO cells.

절패모(浙貝母) 에탄올 추출물의 멜라닌 생성 억제 효과 (Inhibitory Effect of Fritillaria Verticillata Willd. var. Thunbergii Bak Ethanol Extract on Melanin Biosynthesis)

  • 하태광;이부균;윤정록;문연자;우원홍;박성하;이장천
    • 동의생리병리학회지
    • /
    • 제25권3호
    • /
    • pp.510-515
    • /
    • 2011
  • This study was conducted to evaluate the depigmenting properties of ethanol extract from a Fritillaria verticillata Willd. (EFV) in B16F10 cells. Fritillaria verticillata Willd., a perennial herbaceous plant, has been used as a stimulator of mammary gland, expectorant, blood pressure depressant, antitussive agents in Korean herbal medicine. In the present study, we observed that melanin synthesis of B16F10 cells were significantly decreased by EFV without cytotoxicity. However, EFV could not suppress tyrosinase activity in B16F10 cells and mushroom tyrosinase activity. Furthermore, EFV did not effect the protein expression of tyrosinase, tyrosinase-related protein -1 (TRP-1), and TRP-2. These results suggest that EFV inhibited melanin synthesis and the hypopigmentary effect of EVF was not due to regulation of tyrosinase protein.

인진(茵蔯) 에탄올추출물이 ${\alpha}$-MSH로 유도된 과색소 형성에 미치는 영향 (Effect of the Ethanol Extract of Artemisiae Capillaris Herba on the Hyperpigmentation Induced by ${\alpha}$-MSH)

  • 신기돈;김대성;이장천;문연자;우원홍;이영철
    • 동의생리병리학회지
    • /
    • 제23권3호
    • /
    • pp.574-580
    • /
    • 2009
  • Melanogenesis is induced mainly by ultraviolet radiation of sunlight and ${\alpha}$-Melanocyte stimulation hormone (${\alpha}$-MSH) which binds to a specific G protein coupled receptor. ${\alpha}$-MSH and cAMP-elevating agents are known to melanin syntheisis and dendrite outgrowth. The purpose of this study was to investigate the mechanism of melanogenesis inhibition in B16/F10 cells by ethanol extract of Artemisiae Capillaris Herba. In the present study, ${\alpha}$-MSH led to a stimulation of melanin synthesis that appeared to result from an increased tyrosinase activity and melanin content. However, the ethanol extract of Artemisiae Capillaris Herba inhibited the ${\alpha}$-MSH-induced tyrosinase activity and melanin content. In control conditions, B16/F10 cells displayed a fibroblastic appearance while ${\alpha}$-MSH treatment promoted the emergence of small and numerous dendrites from the plasma membrane. The ethanol extract of Artemisiae Capillaris Herba abolished the ${\alpha}$-MSH-induced dendricity. Regarding protein levels of the melanogenic enzymes, the amounts of tyrosinase were increased after incubation with ${\alpha}$-MSH. The treatment of Artemisiae Capillaris Herba ethanol extract decreased the ${\alpha}$-MSH expression levels of tyrosinase. Based on these findings, it is likely that the ethanol extract of Artemisiae Capillaris Herba exerts its depigmenting effects in B16/F10 cells through the suppression of tyrosinase expression, which are key enzymes for melanogenesis.

자외선 B를 조사한 마우스 표피멜라닌세포 변화에 대한 홍삼의 효과 (The Effect of Red Ginseng on Epidermal Melanocytes in Ultraviolet B-irradiated Mice)

  • 이해준;김세라;김중선;문창종;김종춘;배춘식;장종식;조성기;김성호
    • Journal of Ginseng Research
    • /
    • 제30권4호
    • /
    • pp.188-193
    • /
    • 2006
  • We induced the activation of melanocytes in the epidermis of C57BL/6 mice by ultraviolet B (UVB) irradiation and observed the effect of red ginseng (RG) on the formation, and decrease of UVB-induced epidermal mel-anocytes. C57BL/6 mice were irradiated by UVB $80mJ/cm^2$ (0.5 mW/sec) daily for 7 days, and RG was intraperitoneally or topically applied pre- or post-irradiation. For the estimation of change of epidermal melanocytes, light microscopic observation with dihydroxyphenylalanine (DOPA) stain was performed. Split epidermal sheets prepared from the ear of untreated mice exhibited 11-16 $melanocytes/mm^2$, and one week after UV irradiation, the applied areas show an increased number of strongly DOPA-positive melanocytes with stout dendrites. But intraperitoneal or topical treatment with RG before each irradiation interrupted UVB-induced pigmentation and resulted in a marked reduction in the number of epidermal melanocytes as compared to radiation control skin. The number and size of DOPA-positive epidermal mel-anocytes were also significantly decreased in intraperitoneally injected or topically applicated group after irradiation with RG at 3rd and 6th weeks after irradiation. The present study suggests the RG as inhibitor of UVB-induced pigmentation and depigmenting agent.

Antioxidant Activities and Melanogenesis Inhibitory Effects of Terminalia chebula in B16/F10 Melanoma Cells

  • Lee, Hyun-Sun;Cho, Hye-Jin;Lee, Kwang-Won;Park, Sung-Sun;Seo, Ho-Chan;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • 제15권3호
    • /
    • pp.213-220
    • /
    • 2010
  • To examine the potential of Terminalia chebula as a whitening agent, we measured antioxidant activity using DPPH$\cdot$, ABTS${\cdot}^+$ assays and ferric-reducing antioxidant power (FRAP) assays, and depigmenting activity using B16F10 melanoma cells. The intracellular reactive oxygen species (ROS) level was monitored by $H_2DCFDA$ fluorescence labeling, and melanin contents in B16F10 melanoma cells by 960 $J/m^2$ dose of UVA-induced oxidative stress. The radical-scavenging activities of T. chebula extract (TCE) were measured in terms of $EC_{50}$ values using DPPH$\cdot$, ABTS${\cdot}^+$ assays and FRAP value were 280.0 ${\mu}g/mL$, 42.2 ${\mu}g/mL$ and 113.1 ${\mu}mol$ $FeSO_4{\cdot}7H_2O/g$, respectively. We found that ROS and melanin concentrations were reduced by TCE treatments of 25 ${\mu}g/mL$ under UVA-induced oxidative stress. Tyrosinase activity and melanin contents in $\alpha$-melanocyte stimulating hormone (MSH)-induced melanoma cells both decreased dose-dependently in the treatment groups. TCE similarly reduced melanogenesis in B16F10 melanoma cells stimulated by $\alpha$-MSH as compared to arbutin as a positive control. T. chebula may prove to be a useful therapeutic agent for hyperpigmentation and an effective component in skin whitening and.or lightening cosmetics.

복분자가 B16 세포주의 Tyrosinase, TRP-1 and TRP-2 발현에 미치는 영향 (Effects of Rubus coreanus Miquel on the Expressions of Tyrosinase, TRP-1 and TRP-2 in B16 Melanoma Cells)

  • 오세미;문연자;우원홍
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1456-1461
    • /
    • 2007
  • Melanogenesis is induced mainly by ultraviolet radiation of sunlight and ${\alpha}-melanocyte$-stimulating hormone (${\alpha}-MSH$) which binds to a specific G protein coupled receptor. The purpose of this study was to investigate the mechanism of melanogenesis inhibition in B16/F10 cells by methanol extract of Rubus coreanus Miquel (RCM). In the present study, ${\alpha}-MSH$ and forskolin led to a stimulation of melanin synthesis that appeared to result from an increased tyrosinase activity and melanin content. However, RCM inhibited the ${\alpha}-MSH$- and forskolin-induced melanin synthesis. In addition, RCM abolished the ${\alpha}-MSH$- and forskolin-induced cytoplasmic dendricity. Regarding protein levels of the melanogenic enzymes, the amounts of tyrosinase and tyrosinase-related protein 1 (TRP-1) were increased after incubation with α-MSH and forskolin. The treatment of RCM decreased the ${\alpha}-MSH$- and forskolin-induced expression levels of tyrosinase and TRP-1. Based on these findings, it is likely that RCM exerts its depigmenting effects in B16/F10 cells through the suppression of tyrosinase and TRP-1 expression, which are key enzymes for melanogenesis.