• Title/Summary/Keyword: Deoxynivalenol(DON)

Search Result 50, Processing Time 0.027 seconds

Lauric acid reduces apoptosis by inhibiting FOXO3a-signaling in deoxynivalenol-treated IPEC-J2 cells

  • Na Yeon Kim;Sang In Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.5
    • /
    • pp.1010-1020
    • /
    • 2024
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of food or feed worldwide and causes disease in animals. Lauric acid (LA) is a medium-chain fatty acid useful for barrier functions such as antimicrobial activity in the intestine of monogastric animals. However, the molecular mechanisms by which lauric acid exerts its effects on the deoxynivalenol-exposed small intestine have not been studied. We used an intestinal porcine epithelial cell line (IPEC-J2) as an in vitro model to explore the molecular mechanism of lauric acid in alleviating deoxynivalenol-induced damage. We found that lauric acid reversed deoxynivalenol-induced reduction in cell viability. Our quantitative real-time polymerase chain reaction results indicated that lauric acid alleviated deoxynivalenol-induced apoptosis through Annexin-V. Additionally, immunofluorescence and Western blotting showed that lauric acid attenuated deoxynivalenol-induced forkhead box O3 (FOXO3a) translocation into the nucleus. These results suggest that lauric acid attenuates forkhead box O3 translocation in the small intestine damaged by deoxynivalenol, thereby reducing apoptosis. In conclusion, this study found that lauric acid alleviates deoxynivalenol-induced damage in intestinal porcine epithelial cell line through various molecular mechanisms.

Co-occurrence of Deoxynivalenol and Zearalenone in Cereals and their Products (곡류와 그 가공품에서 Deoxynivalenol과 Zearalenone의 분석)

  • Ok, Hyun-Ee;Chang, Hyun-Joo;Choi, Sung-Wook;Lee, Na-Ri;Kim, Hyun-Jung;Koo, Min-Sun;Chun, Hyang-Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.375-381
    • /
    • 2007
  • Deoxynivalenol (DON) and zearalenone (ZEN) are naturally occurring toxins produced by Fusarium species, which may grow on cereals. The aims of this study were to determine the incidence and contamination levels of DON and ZEN in cereal products. Seventy samples of cereal products were randomly selected from retail outlets during 2005 and 2006. DON and ZEN were analyzed by using high performance liquid chromatography with fluorescence and UV-detector, respectively. Detection limits were $4.4{\mu}g\;kg^{-1}$ for DON and $3.4{\mu}g\;kg^{-1}$ for ZEN. DON and ZEN were detected in 37 and 17, respectively, of the 70 samples, but the levels found were very low. In particular, out of 70 samples, 12 samples of corn and barley were co-contaminated with DON and ZEN, with levels ranging from 5.6 to $1842.3{\mu}g\;kg^{-1}$ for DON and 12.1 to $174.9{\mu}g\;kg^{-1}$ for ZEN, respectively. However, DON and ZEN were not detected in breakfast cereals and wheat flour. The highest level was found in dried corn kernel samples that confirmed by LC-MS. This study show that DON and ZEN co-contaminate with low levels in cereal products.

NMR-based metabolomic profiling of the liver, serum, and urine of piglets treated with deoxynivalenol

  • Jeong, Jin Young;Kim, Min Seok;Jung, Hyun Jung;Kim, Min Ji;Lee, Hyun Jeong;Lee, Sung Dae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.455-461
    • /
    • 2018
  • Deoxynivalenol (DON), a Fusarium mycotoxin, causes health hazards for both humans and livestock. Therefore, the aim of this study was to investigate the metabolic profiles of the liver, serum, and urine of piglets fed DON using proton nuclear magnetic resonance ($^1H-NMR$) spectroscopy. The $^1H-NMR$ spectra of the liver, serum, and urine samples of the piglets provided with feed containing 8 mg DON/kg for 4 weeks were aligned and identified using the icoshift algorithm of MATLAB $R^2013b$. The data were analyzed by multivariate analysis and by MetaboAnalyst 4.0. The DON-treated groups exhibited discriminating metabolites in the three different sample types. Metabolic profiling by $^1H-NMR$ spectroscopy revealed potential metabolites including lactate, glucose, taurine, alanine, glycine, glutamate, creatine, and glutamine upon mycotoxin exposure (variable importance in the projection, VIP > 1). Forty-six metabolites selected from the principal component analysis (PCA) helped to predict sixty-five pathways in the DON-treated piglets using metabolite sets containing at least two compounds. The DON treatment catalyzed the citrate synthase reactions which led to an increase in the acetate and a decrease in the glucose concentrations. Therefore, our findings suggest that glyceraldehyde-3-phosphate dehydrogenase, citrate synthase, ATP synthase, and pyruvate carboxylase should be considered important in piglets fed DON contaminated feed. Metabolomics analysis could be a powerful method for the discovery of novel indicators underlying mycotoxin treatments.

Clinical and Toxico-pathological Parameters for Deoxynivalenol Intoxication in B6C3F1 Mice (Deoxynivalenol에 의한 생체독성 스크리닝 및 중독증 진단지표 확립)

  • Kim, Eun-Joo;Jeong, Sang-Hee;Ku, Hyun-Ok;Kang, Hwan-Goo;Cho, Joon-Hyoung
    • Toxicological Research
    • /
    • v.23 no.4
    • /
    • pp.353-362
    • /
    • 2007
  • Deoxynivalenol (DON) is a common food borne mycotoxin and occurs predominantly in grains such as wheat, barley, oats, etc. DON induces systemic health problems such as loss of appetite, emesis and diarrhea in both human and farm animals. Reliable diagnostic parameters for DON intoxication are needed to prevent deep health impact. In order to establish useful diagnostic parameters, we investigated clinical signs, hematological values, serum biochemical values, gross-, histo- and toxico-pathological findings in B6C3F1 male mice after oral administration of DON (0.83, 2.5 and 7.5 mg/kg) for 8 days. Body weight gain was significantly decreased at the highest dose of DON. Anorexia, ataxia, for crudness and lack of vigor were observed at the highest dose DON group. In hematological values, the numbers of WBC and platelets and hemoglobin content were reduced with decreased neutrophil and monocytes by 7.5 mg/kg DON. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) were prolonged in a dose-dependent manner and the content of fibrinogen was elevated at high dose of DON. Of serum biochemical values, total protein, globulin, BUN, cholesterol and test-osterone were reduced but total bilirubin and albumin/globulin ratio increased. The enzyme activity of alkaline phosphatase was decreased while that of alanine aminotransferase was elevated. Relative organ weights of thymus, seminal vesicle/prostate and testes were dose-dependently reduced but those of liver and left adrenal gland increased with dose dependency. As for pathological findings, atrophy of thymus, seminal vesicle/prostate and testes and submucosal edema and ulceration in stomach and depletion of lymphocytes in thymus cortex were observed. In conclusion, these clinical, hematological, blood biochemical and patholgical parameters obtained in the present studies can be used for diagnosis of DON-mycotoxicosis, especially, low WBC, platelets, protein, BUN and testosterone and delayed prothrombin time can be available as for reliable diagnostic parameters.

Analysis and Survey for Contamination of Deoxynivalenol and Zearalenone in Feed by High Performance Liquid Chromatography (HPLC를 이용한 사료 중 Deoxynivalenol, Zearalenone의 분석과 오염도 조사)

  • Kim, Dong-Ho;Choi, Kyu-Il;Hong, Kyung-Suk;Kim, Hyun-Jung;Song, Yeong-Jin;Gang, Seung-Hun;Jang, Han-Sub;Cho, Hyun-Jung;Han, Gye-Su
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.214-221
    • /
    • 2011
  • Deoxynivalenol (DON) and zearalenone (ZEN) are mainly contaminated mycotoxins in feeds. The study was carried out to analyze and survey the contamination of DON and ZEN in one hundred thirteen samples of feeds. After cleaning all samples with immunoaffinity column, the mycotoxins were analysed by using high performance liquid chromatography/fluorescence with diode array detector (HPLC/FLD with DAD). The average recoveries of DON were 88.76 and 95.40% at the levels of 200 and 1,000 ${\mu}g/kg$ and 87.09 and 98.40% of ZEN were recovered at the levels of 100 and 500 ${\mu}g/kg$, respectively. The limit of detection (LOD) were 6.0 and 3.0 ${\mu}g/kg$ for DON and ZEN, respectively. The average concentrations of DON were 372.1, 324.0 and 990.9 ${\mu}g/kg$ in chicken, pig and cattle feed, respectively. Those of ZEN were 76.1, 43.7 and 196.2 ${\mu}g/kg$ for them, individually.

A STUDY ON THE CLASTOGENICITY OF TRICHOTHECENE MYCOTOXINS IN CHINESE HAMSTER LUNG CELLS

  • Ryu, Jae-Chun;Chang, Il-Moo
    • Toxicological Research
    • /
    • v.9 no.1
    • /
    • pp.13-21
    • /
    • 1993
  • The chromosomal aberration of the trichothecene mycotoxins such as T-2 toxin (T-2), HT-2 toxin (HT-2), nivalenol (NIV) and deoxynivalenol (DON) which are one of the most important food borne contaminants produced by Fusarium species fungi, was investigated in the chinese hamster lung cells. These trichothecene mycotoxins showed high cytotoxicity in order of T-2, HT-2, NIV, and DON to the chinese hamster lung cells. Nevertheless high cytotoxicity of these trichothecene mycotoxins, no clastogenicity of T-2 and HT-2 in the range of 0.01-0.0025 ng/ml, of NIV in that of 0.3-0.075ng/ml, and of DON in that of 1.0-0.25 ng/ml was observed in both with and without metabolic activation system.

  • PDF

Simultaneous Analysis and Survey for Contamination of Nivalenol, Deoxynivalenol, T-2 toxin and Zearalenone in Feed (사료 중 Nivalenol, Deoxynivalenol, T-2 foxin과 Zearalenone의 동시분석과 오염도조사)

  • Kim, Dong-Ho;Kim, Hyun-Jung;Jang, Han-Sub;Kim, Yeong-Min;Choi, Heng-Bo;Ahn, Jong-Sung
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Nivalenol (NIV), deoxynivalenol (DON), T-2 toxin (T-2) and zearalenone (ZEN) are mycotoxins produced by some Fusarium species known to be very frequently contaminated in feed. The study for simultaneous analysis and contamination survey in animal feed carried out. All mycotoxins were analysed by using high performance liquid chromatography tandem mass with internal standard. The limits of detection (LOD) were $2.0\;{\mu}g/kg$, $1.0\;{\mu}g/kg$, $1.0\;{\mu}g/kg$ and $0.1\;{\mu}g/kg$ for NIV, DON, T-2 and ZEN, respectively. Two hundred and thirty nine samples of feed were collected. The average concentration of DON was $212.3\;{\mu}g/kg$, $207.8\;{\mu}g/kg$ and $812.1\;{\mu}g/kg$ in chicken, pig and cattle feed, respectively. The average concentration of ZEN was $31.2\;{\mu}g/kg$, $35.6\;{\mu}g/kg$ and $147.2\;{\mu}g/kg$ for them, respectively. Especially, the levels of contamination for DON and ZEN were higher than those of NIV or T-2. And, the levels of contamination for four Fusarium mycotoxins in cattle feed appeared higher than those of pig and chicken feed. It was investigated that the high level of mycotoxin contamination in cattle feed was caused by com gluten feed of ingredients for feed, mainly.

Detection of deoxynivalenol using a MOSFET-based biosensor (MOSFET형 바이오 센서를 이용한 디옥시 니발레놀의 검출)

  • Lim, Byoung-Hyun;Kwon, In-Su;Lee, Hee-Ho;Choi, Young-Sam;Shin, Jang-Kyoo;Choi, Sung-Wook;Chun, Hyang-Sook
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • We have detected deoxynivalenol(DON) using a metal-oxide-semiconductor field-effect-transistor(MOSFET)-based biosensor. The MOSFET-based biosensor is fabricated by a standard complementary metal-oxide-semiconductor(CMOS) process, and the biosensor's electrical characteristics were investigated. The output of the sensor was stabilized by employing a reference electrode that applies a fixed bias to the gate. Au which has a chemical affinity for thiol was used as the gate metal to immobilize a self-assembled monolayer(SAM) made of 16-mercaptohexadecanoic acid(MHDA). The SAM was used to immobilize anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti- deoxynivalenol antibody. Anti-deoxynivalenol antibody and deoxynivalenol were bound by an antigen-antibody reaction. In this study, it is confirmed that the MOSFET-based biosensor can detect deoxynivalenol at concentrations as low as 0.1 ${\mu}g$/ml. The measurements were performed in phosphate buffered saline(PBS; pH 7.4) solution. To verify the interaction among the SAM, antibody, and antigen, surface plasmon resonance(SPR) measurements were performed.

Response of Barley Genotypes to Fusarium Head Blight under Natural Infection and Artificial Inoculation Conditions

  • Khanal, Raja;Choo, Thin Meiw;Xue, Allen G.;Vigier, Bernard;Savard, Marc E.;Blackwell, Barbara;Wang, Junmei;Yang, Jianming;Martin, Richard A.
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.455-464
    • /
    • 2021
  • Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = -0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.

Physiological impact on layer chickens fed corn distiller's dried grains with solubles naturally contaminated with deoxynivalenol

  • Wickramasuriya, Samiru Sudharaka;Macelline, Shemil Priyan;Kim, Eunjoo;Cho, Hyun Min;Shin, Taeg Kyun;Yi, Young Joo;Jayasena, Dinesh D.;Lee, Sung-Dae;Jung, Hyun Jung;Heo, Jung Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.313-322
    • /
    • 2020
  • Objective: An experiment was conducted to investigate the response of laying hens fed corn distiller's dried grains with solubles (DDGS) that are naturally contaminated with deoxynivalenol (DON). Methods: One hundred and sixty 52-week-old Lohmann Brown Lite hens were randomly allotted to five dietary treatments with 8 replicates per treatment. The dietary treatments were formulated to provide a range of corn DDGS contaminated with DON from 0% to 20% (i.e., 5% scale of increment). All laying hens were subjected to the same management practices in a controlled environment. Body weight, feed intake and egg production were measured biweekly for the entire 8-week experiment. The egg quality was measured biweekly for 8 weeks. On weeks 4 and 8, visceral organ weights, blood metabolites, intestinal morphology, and blood cytokine concentrations were measured. Results: The inclusion of corn DDGS contaminated with DON in the diet did not alter (p>0.05) the body weight, feed intake, hen-day egg production, egg mass and feed efficiency of the laying hens. No difference was found (p>0.05) in the egg quality of hens that were fed the dietary treatments. Furthermore, hens that were fed a diet containing corn DDGS contaminated with DON showed no change (p>0.05) in the visceral organ weights, the blood metabolites, and the cytokine concentrations. The crypt depth increased (p<0.05) as the amount of corn DDGS contaminated with DON increased. Proportionately, the villus height to crypt depth ratio of the laying hens decreased (p<0.05) with the increasing level of corn DDGS contaminated with DON in the diet. Conclusion: The inclusion of corn DDGS contaminated with DON up to 20% in layer diets did not cause changes in egg production performance and egg quality, which indicates that DON is less toxic at the concentration of 1.00 mg DON/kg.