• Title/Summary/Keyword: Denture Base Resin

Search Result 178, Processing Time 0.028 seconds

A CLINICAL STUDY ON THE RETENTION OF MAXILLARY COMPLETE DENTURE WITH DIFFERENT DENTURE BASE MATERIALS (의치상의 종류에 따른 상악 의치상의 유지력에 관한 임상적 연구)

  • Lee Jong-Hyuk;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.58-70
    • /
    • 2001
  • For the successful treatment of complete denture, obtaining a good retention is essential. There are lots of factors affecting denture retention. Denture material, one of those factors affecting denture retention, was the subject of this study, and internal surface treatment also considered for the method of enhancing denture retention. Two resin(Lucitone $199^{(R)}$(heat cured resin) Vertex $CP^{(R)}$(self cured resin)) and two metal($Biosil^{(R)}$(Co-Cr alloy), $Vitallium^{(R)}$(Co-Cr alloy)) denture base materials were used for making test denture base. Newly developed device was used for measuring denture retention. After the retention was measured. We treated internal surface of test denture base with $50{\mu}m\;Al_2O_3$ powder, under 90psi, for 1 minute. Then the retention was measured again. The result was analyzed with K-S test, one-way ANOVA test and independent t-test to deter mine the significant differences as the 95% level of confidence. The results are as follows : In cases of without internal surface treatment, the retention was increased in order of $Vitallium^{(R)},\;Biosil^{(R)},\;Vertex CP^{(R)}$ and Lucitone $199^{(R)}$. Except between Vertex $CP^{(R)}$ and $Biosil^{(R)}$, retention of the other materials was significantly different (p<0.05). After the treatment of internal surface, the retention was increased in order of $Vitallium^{(R)},\;Biosil^{(R)},\;Lucno\;199^{(R)},\;Vertex\;CP^{(R)}$. Except between Lucitone $199^{(R)}$ and Vertex $CP^{(R)}$, $Vitallium^{(R)}$ and $Biosil^{(R)}$ the retention of remaining groups was significantly different each other (p<0.05). In the matter of each material, after the internal surface treatment the retention was increased with Vertex $CP^{(R)},\;Biosil^{(R)}\;and\;Vitallium^{(R)}$ and the value of differences were statistically significant. When we compare the retention of resin and metal denture base, the retention of both denture bases increased significantly with internal surface treatment, and resin denture base showed better retention. As the results show, selecting denture base material could be an important choice of complete denture treatment. To increase denture retention, internal surface treatment can be considered as a possible method.

  • PDF

THE CHANCE IN TRANSVERSE STRENGTH OF DENTURE BASE AFTER RELINE PROCEDURE (개상한 의치상의 전단굴곡강도 변화)

  • Kim, Seon-Young;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.782-790
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of proportional thickness of various reline materials on the transverse strength of denture base. The denture base resin used in this study was Vertex $RS^{(R)}$ (Dentimex Zeist., Holland). The reline resins used were Tokuso $rebase^{(R)}$ normal set (Tokuyama Corp., Japan), $Rebaron^{(R)}$ (GC Corp., Japan), $Kooliner^{TM}$ (GC INC., U.S.A), New $truliner^{TM}$(Harry J. Bosworth Co., U.S.A). The bulk specimens with 2.5mm thickness of denture base were prepared as the control group. Group 1 was fabricated with 2.0mm thickness of denture base and 0.5mm reline material, group 2 with 1.5:1.0mm, group 3 with 1.0:1.5mm, group 4 with 0.5:2.0mm composition. Measurements of transverse strength were taken for each specimens The results were as follows: 1. Regardless of the reline resin type, the transverse strength of denture base was decreased after reline procedure. 2. The transverse strength according to the reline resin type was decreased in the following order : Rebaron, Tokuso rebase, Kooliner, and then New truliner and there was a significant difference among the reline materials (P<0.05). 3. The strength of the relined denture base generally decreased as the proportional thickness of the denture reline material increased. These results suggest that increasing the proportional thickness of the reline material progressively decreased the strength of the relined denture base. Thus, the denture base should not be unnecessarily altered during the reline procedure.

  • PDF

Effect of Fiber Type and Combination on the Reinforcement of Heat Polymerized Denture Base Resin (섬유의 종류와 조합이 열중합 의치상 레진의 강화에 미치는 영향)

  • Yu, Sang-Hui;Kim, Young-Im
    • Journal of dental hygiene science
    • /
    • v.10 no.6
    • /
    • pp.445-450
    • /
    • 2010
  • The aim of this study was to evaluate the effect according to the fiber type and combination on the reinforcement of heat-polymerized denture base resin. The heat-polymerized resin(Vertex RS, Dentimax, Netherlands) was used in this study. Glass fiber(GL; ER 270FW, Hankuk Fiber Glass, Korea), polyaromatic polyamide fiber(PA; aramid; Kevlar-49, Dupont, U.S.A.) and ultra high molecular weight polyethylene fiber(PE, polyethylene; P.E, Dong Yang Rope, Korea) were used to reinforce the denture base resin specimens. The final size of test specimen was $64mm{\times}10mm{\times}3.3mm$. The specimens of each group were stored in distilled water at $37^{\circ}C$ for 50 hours before measurement. The flexural strength and flexural modulus were measured by an universal testing machine(Z020, Zwick, Germany) at a crosshead speed of 5 mm/min in a three-point bending mode. In this study, all fibers showed reinforcing effects on denture base resin(p<0.05). In terms of flexural strength and flexural modulus, glass fiber 5.3 vol.% showed most effective reinforcing effect on heat polymerized denture base resin. For flexural modulus, PA/GL was the highest in denture base resin specimen for hybrid FRC using two combination (p<0.05). Glass fiber 5.3 vol.% and PA/GL are considered to be applied effectively in reinforcing the heat polymerized denture base resin.

Biofilm formation on denture base resin including ZnO, CaO, and TiO2 nanoparticles

  • Anwander, Melissa;Rosentritt, Martin;Schneider-Feyrer, Sibylle;Hahnel, Sebastian
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.482-485
    • /
    • 2017
  • PURPOSE. This laboratory study aimed to investigate the effect of doping an acrylic denture base resin material with nanoparticles of ZnO, CaO, and $TiO_2$ on biofilm formation. MATERIALS AND METHODS. Standardized specimens of a commercially available cold-curing acrylic denture base resin material were doped with 0.1, 0.2, 0.4, or 0.8 wt% commercially available ZnO, CaO, and $TiO_2$ nanopowder. Energy dispersive X-ray spectroscopy (EDX) was used to identify the availability of the nanoparticles on the surface of the modified specimens. Surface roughness was determined by employing a profilometric approach; biofilm formation was simulated using a monospecies Candida albicans biofilm model and a multispecies biofilm model including C. albicans, Actinomyces naeslundii, and Streptococcus gordonii. Relative viable biomass was determined after 20 hours and 44 hours using a MTT-based approach. RESULTS. No statistically significant disparities were identified among the various materials regarding surface roughness and relative viable biomass. CONCLUSION. The results indicate that doping denture base resin materials with commercially available ZnO, CaO, or $TiO_2$ nanopowders do not inhibit biofilm formation on their surface. Further studies might address the impact of varying particle sizes as well as increasing the fraction of nanoparticles mixed into the acrylic resin matrix.

A Study on the Shear Bond Strength between Various Denture Bases Resin and Artificial Resin Teeth (수종의 의치상 레진과 레진치아의 전단결합강도에 관한 연구)

  • Lee, Sang-Wook;Cho, In-Ho;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2005
  • The bond strength of denture base resin and resin teeth, is an important factor in the long term prognosis of dentures. The purpose of this study is to find an appropriate combination of commercial denture base resin and artificial resin teeth according to shear bond strength. In this study, the shear bond strength of various denture base resins (Vertex $RS^{(R)}$(Dentimax Ziest, Holland), $PERform^{(R)}$(Hedent GmbH., Germany), SR $IVOCAP^{(R)}$(Ivoclar AG, Schaan, Liechtenstein)) and resin teeth (SR Orthosit PE(Ivoclar AG, Schaan, Liechtenstein), $Trubyte^{(R)}$ $Biotone^{(R)}$(Dentsply, U.S.A.)) was evaluated. 1. In comparison of denture resin, the shear bond strength increased in the order of $IVOCAP^{(R)}$, $PERform^{(R)}$, Vertex $RS^{(R)}$. 2. In resin teeth, $Trubyte^{(R)}$ $Biotone^{(R)}$ showed higher strength, but there was no statistical difference between the groups. 3. According to loading direction, the lingual showed higher strength, but there was no statistical difference. 4. When using SR Orthosit PE, SR $IVOCAP^{(R)}$ showed significantly higher shear bond strength(p<0.05). 5. Fracture tendancy showed more cohesive fractures(59) than adhesive failures(13). $IVOCAP^{(R)}$ showed the most superior results statistically. $Trubyte^{(R)}Biotone^{(R)}$ showed the highest shear bond strength. When using the SR Orthosit PE, it is thought that $IVOCAP^{(R)}$ would present the most superior results.

COMPARATIVE TENSILE BOND STRENGTH OF HEAT-CURED, COLD-CURED, AND LIGHT CURED DENTURE BASE RESINS BONDED TO CONTINUOUS-PRESSURE INJECTION TYPE DENTURE BASE RESIN (지속적 가압 주사식 열중합 의치상 레진에 대한 열중합, 자가중합 및 광중합 레진의 결합력에 관한 비교분석)

  • Whang Seung-Woo;Chung Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.385-393
    • /
    • 1993
  • Injection processing of denture base resin was introduced by Pryer in 1942, in an attempt to reduce processing shrinkage. More recently a continuous-pressure injection type technique has been developed (SR-Ivocap, Ivoclar AG, Schaan, Liechtenstein.), and it reduced processing error and increased resin density. The purpose of this study was to compare tensile bond strength of heat-cured, cold-cured, and light-cured denture base resin bonded to continuous-pressure injection type resin. To know it, 60 cylindrical resin specimens were fabricated, and tensile bond strength were measured. The results were as follows : 1. The mean tensile bond strength bonded to continuous-pressure injection type resin was lower than bonded to conventional heat cured resin. But tensile bond strength of conventional heat cured resin bonding with light cured resin was lower than continuous-pressure injection type resin. 2. Of the tensile bond strength bonded to continuous-pressure injection type resin, tensile bond strength bonding with continuous-pressure injection type resin was the greatest(but not significantly different from bonding with conventional heat cured resin), followed by cold-cured, light-cured resin. 3. Of the tensile bond strength bonded to conventional heat cured resin, tensile bond strength bonding with conventional heat cured resin was the greatest and followed by continuous-pressure injection type resin, cold-cured resin, light-cured resin. According to these results, bonding of continuous-pressure injection type resin with conventional heat cured resin or continuous-pressure injection type resin is acceptable, but bonding with light-cured resin is questionable.

  • PDF

Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin

  • Viotto, Hamile Emanuella do Carmo;Silva, Marcela Dantas Dias;Nunes, Thais Soares Bezerra Santos;Coelho, Sabrina Romao Goncalves;Pero, Ana Carolina
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.305-314
    • /
    • 2022
  • PURPOSE. The aim of this study was to evaluate the flexural strength of a 3D-printed denture base resin (Cosmos Denture), after different immediate repair techniques with surface treatments and thermocycling. MATERIALS AND METHODS. Rectangular 3D-printed denture base resin (Cosmos Denture) specimens (N = 130) were thermocycled (5,000 cycles, 5℃ and 55℃) before and after the different repair techniques (n = 10 per group) using an autopolymerized acrylic resin (Jet, J) or a hard relining resin (Soft Confort, SC), and different surface treatments: Jet resin monomer for 180 s (MMA), blasting with aluminum oxide (JAT) or erbium: yttrium-aluminum-garnet laser (L). The control group were intact specimens. A three-point flexural strength test was performed, and data (MPa) were analyzed by ANOVA and Games-Howell post hoc test (α = 0.05). Each failure was observed and classified through stereomicroscope images and the surface treatments were viewed by scanning electron microscope (SEM). RESULTS. Control group showed the highest mean of flexural strength, statistically different from the other groups (P < .001), followed by MMA+J group. The groups with L treatment were statistically similar to the MMA groups (P > .05). The JAT+J group was better than the SC and JAT+SC groups (P < .05), but similar to the other groups (P > .05). Adhesive failures were most observed in JAT groups, especially when repaired with SC. The SEM images showed surface changes for all treatments, except JAT alone. CONCLUSION. Denture bases fabricated with 3D-printed resin should be preferably repaired with MMA+J. SC and JAT+SC showed the worst results. Blasting impaired the adhesion of the SC resin.

The mechanical properties of 3D printed denture base resin incorporating essential oil microcapsules

  • Steve An;Jane Lesleigh Evans;Stephen Hamlet;Robert Matthew Love
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.4
    • /
    • pp.189-201
    • /
    • 2023
  • PURPOSE. The aim of this study was to investigate the mechanical properties of three-dimensional (3D) printed denture base resin incorporating microcapsules containing plant essential oils. MATERIALS AND METHODS. Denture base specimens containing up to 3% w/v essential oil microcapsule powders (MCPs), i.e., eucalyptus, geranium, lavender, menthol, and tea tree, in two resins (Detax and NextDent 3D+) were 3D printed using two printers (Asiga and NextDent 5100). The dispersion and interaction of the MCPs in the resin were assessed by SEM while the mechanical properties of the incorporated denture base including flexural strength (MPa), flexural modulus (MPa), Vickers hardness (VHN), and surface roughness (Ra) were also subsequently evaluated. Statistical analysis of any differences in mean values was determined using a two-way ANOVA with Tukey's post hoc testing (α = .05). RESULTS. The spherical shape of the MCPs was maintained during the mixing and polymerization/printing process. However, the Detax-Asiga group showed significant agglomeration of the MCPs even at the lowest MCP concentration levels (0.5% w/v). Overall, as the microcapsule concentration increased, the mean flexural strength decreased, though the menthol MCP groups remained compliant with the ISO standard. The flexural modulus and harness remained relatively unchanged, and the flexural modulus complied with the ISO standard regardless of the MCP concentration. Surface roughness increased with the addition of the MCPs but also remained below that required for clinical acceptance. CONCLUSION. Incorporation of microencapsulated plant essential oils into 3D printed denture base resin was successfully achieved. While incorporation negatively influenced flexural strength and surface roughness, little effect on flexural modulus and Vickers hardness was demonstrated.

A STUDY OF THE STRESS TRANSMISSION OF VARIOUS ARTIFICIAL TEETH AND DENTURE BASE MATERIALS TO THE UNDER-LYING SUPPORTING TISSUES (인공치와 의치상의 재질에 따른 의치상 하부 지지조직에의 응력전달에 관한 연구)

  • Chung, Hyun-Gun;Chung, Moon-Kyu;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.79-100
    • /
    • 1989
  • The Purpose of this study was to investigate material differences in stress transmission among various artificial teeth and denture base materials. For this study, a two-dimensional finite element model and a two-dimensional photoelastic model of a mandible with complete denture were made. A resin tooth and a porcelain tooth were used as artificial teeth, and a resin base, a metal lined base, and a soft-liner lined base were used as denture bases. An occlusal load was applied and principal stresses generated in the supporting tissues were compared. To test the impact stress transmission, strain gauge attached to the denture base specimens made of the different materials were made in thick and thin groups. Voltage outputs from hitting the specimen with a steel ball were compared. The results were as follows : 1. In FEM, increasing the mucosal thickness reduced the maximum principal stresses in the supporting tissues, but altering the tooth materials and the base materials induced no difference in the stresses. 2. In photoelastic model study, no difference in fringe order among the specimens were observed, but the thick mucosa group and the soft-liner lined group revealed a more uniform distribution of the load. 3. In strain measuring, the impact force transmission was highest in the soft-liner lined group, and was the lowest in the metal lined group(p<0.01). 4. In the thin group using the resin base, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the thick group. In the soft-liner lined group, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the metal lined group. 5. The thick group showed lower impact stress transmission than the thin group(p<0.01).

  • PDF

Research for The Comparing Test of the Fracture Strength According to the Heat Curing Method in the Denture Base Resin (의치상용 열중합 레진의 Curing방법에 따른 파절 강도의 비교실험연구)

  • Han, Min-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • For this study, self curing resin and heat curing resin used for existing usual resin denture base in the denture industry were chosen by manufacturer. Curing tests for 30-minute, I-hour, 2-hour and 3-hour were conducted to know the strength of the resins and conduct analysis to get other necessary information. The results obtained are as follows: 1. Heat curing resins show a little differences among the manufacturers. However 30-minute curing resin shows great difference as shown in the fracture strength test. 2. The effect from the granularity of the resins on the fracture strength was found insignificant which means there is no difference between coherence and strength. 3. To summarize the results from each time level, the longer the time is, the more the minute cracks on the surface, which is the cause of reduced strength. From this test, it was identified that in making the denture base for patients in dental clinics, 30-minute curing is most efficient and effective in reducing discoloration and monomers, although long-time curing has been considered to be the principal.

  • PDF