• Title/Summary/Keyword: Dental pulp cells

Search Result 125, Processing Time 0.029 seconds

Apoptosis during Rat Tooth Development

  • Kim, Min-Ju;Kim, Yu-Seong;Moon, Yeon-Hee;Jung, Na-Ri;Moon, Jung-Sun;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • v.36 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • Teeth develop via a reciprocal induction between the ectomesenchyme originating from the neural crest and the ectodermal epithelium. During complete formation of the tooth morphology and structure, many cells proliferate, differentiate, and can be replaced with other structures. Apoptosis is a type of genetically-controlled cell death and a biological process arising at the cellular level during development. To determine if apoptosis is an effective mechanism for eliminating cells during tooth development, this process was examined in the rat mandible including the developing molar teeth using the transferase-mediated dUTP-biotin nick labeling (TUNEL) method. The tooth germ of the mandibular first molar in the postnatal rat showed a variety of morphological appearances from the bell stage to the crown stage. Strong TUNEL-positive reactivity was observed in the ameloblasts and cells of the stellate reticulum. Odontoblasts near the prospective cusp area also showed a TUNEL positive reaction and several cells in the dental papilla, which are the forming pulp, were also stained intensively in this assay. Our results thus show that apoptosis may take place not only in epithelial-derived dental organs but also in the mesenchyme-derived dental papilla. Hence, apoptosis may be an essential biological process in tooth development.

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

  • Kim, Ji-Youn;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.

Comparison of gene expression profiles of human dental pulp cells treated with mineral trioxide aggregate and calcium hydroxide (인간치수세포에 Mineral Trioxide Aggregate와 수산화칼슘 제재 적용 시 유전자 발현 양상 비교)

  • Kim, Yong-Beom;Shon, Won-Jun;Lee, Woo-Cheol;Kum, Kee-Yeon;Baek, Seung-Ho;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.397-408
    • /
    • 2011
  • Objectives: This study investigated changes in gene expressions concerning of differentiation, proliferation, mineralization and inflammation using Human-8 expression bead arrays when white Mineral Trioxide Aggregate and calcium hydroxide-containing cement were applied in vitro to human dental pulp cells (HDPCs). Materials and Methods: wMTA (white ProRoot MTA, Dentsply) and Dycal (Dentsply Caulk) in a Teflon tube (inner diameter 10 mm, height 1 mm) were applied to HDPCs. Empty tube-applied HDPCs were used as negative control. Total RNA was extracted at 3, 6, 9 and 24 hr after wMTA and Dycal application. The results of microarray were confirmed by reverse transcriptase polymerase chain reaction. Results: Out of the 24,546 genes, 43 genes (e.g., BMP2, FOSB, THBS1, EDN1, IL11, COL10A1, TUFT1, HMOX1) were up-regulated greater than two-fold and 25 genes (e.g., SMAD6, TIMP2, DCN, SOCS2, CEBPD, KIAA1199) were down-regulated below 50% by wMTA. Two hundred thirty nine genes (e.g., BMP2, BMP6, SMAD6, IL11, FOS, VEGFA, PlGF, HMOX1, SOCS2, CEBPD, KIAA1199) were up-regulated greater than two-fold and 358 genes (e.g., EDN1, FGF) were down-regulated below 50% by Dycal. Conclusions: Both wMTA and Dycal induced changes in gene expressions related with differentiation and proliferation of pulp cells. wMTA induced changes in gene expressions related with mineralization, and Dycal induced those related with angiogenesis. The genes related with inflammation were more expressed by Dycal than by wMTA. It was confirmed that both wMTA and Dycal were able to induce gene expression changes concerned with the pulp repair in different ways.

Comparison of Various Transfection Methods in Human and Bovine Cultured Cells

  • Jin, Longxun;Kim, Daehwan;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.177-185
    • /
    • 2014
  • Transfection is a gene delivery tool that is a popular means of manipulating cellular properties, such as induced pluripotent stem cell (iPSC) generation by reprogramming factors (Yamanaka factors). However, the efficiency of transfection needs to be improved. In the present study, three transfection protocols - non-liposomal transfection (NLT), magnetofection and electroporation - were compared by analysis of their transfection efficiencies and cell viabilities using human dental pulp cells (hDPC) and bovine fetal fibroblasts (bFF) as cell sources. Enhanced green fluorescent protein gene was used as the delivery indicator. For magnetofection, Polymag reagent was administrated. NLT, FuGENE-HD and X-treme GENE 9 DNA transfection reagents were used for NLT. For electroporation, the $Neon^{TM}$ and $NEPA21^{TM}$ electroporators were tested. $Neon^{TM}$ electroporation showed highest transfection efficiency when compared with NLT, magnetofection, and $NEPA21^{TM}$ electroporation, with transfection efficiency of about 33% in hDPC and 50% in bFF, based on viable cell population in each cell type. These results suggest that transfection by $Neon^{TM}$ electroporation can be used to deliver foreign genes efficiently in human and bovine somatic cells.

Biologic Response of Human Deciduous Dental Pulp Cells on Newly Developed MTA-like Materials (새로 개발된 MTA 유사 재료에 대한 유치 치수세포의 생물학적 반응)

  • Lee, Haewon;Shin, Yooseok;Jung, Jaeeun;Kim, Seongoh;Lee, Jaeho;Song, Jeseon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.4
    • /
    • pp.291-301
    • /
    • 2015
  • This study compared the in vitro cell viability and differentiation potentials of human deciduous dental pulp cells (DPCs) on mineral trioxide aggregate (MTA)-like products (ProRoot MTA, RetroMTA and Endocem Zr). The experimental materials were prepared as circular discs, which were used to test the effects of the materials on the viability of human DPCs when placed in direct and indirect contact. Furthermore, the pH of the extracted materials was recorded, and their effect on cell differentiation potential was evaluated by evaluating the alkaline phosphatase (ALP) activity and Alizarin Red S staining of DPCs incubated with the test materials. In direct contact, the cell viability of human DPCs was higher with ProRoot MTA and RetroMTA than with Endocem Zr. However, when in indirect contact, the cell viability of human DPCs was generally higher in Endocem Zr than in ProRoot MTA and Retro MTA. With respect to pH, the alkalinity was lower for Endocem Zr than for the other test materials. The ALP activities of the cells were not enhanced by any of the experimental materials. Alizarin Red S staining of the tested human DPCs revealed that their differentiation potential was lower than for cells incubated with osteogenic induction medium. While there were differences in the responses of the human DPCs to the test materials, all displayed degrees of cytotoxicity and were unable to enhance either the viability or differentiation of human DPCs. However, Endocem Zr exhibited better cell viability and was less alkaline than the other test materials.

Characterization of Odontoblasts in Supernumerary Tooth-derived Dental Pulp Stem Cells between Passages by Real-Time PCR (과잉치 치수유래 줄기세포의 Real-time PCR에 의한 계대간 상아질모세포 발현 특성)

  • Ji, Sangeun;Song, Sol;Lee, Joonhaeng;Kim, Jongbin;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.291-301
    • /
    • 2021
  • The aim of this study is to compare the properties of odontoblast gene of early passage cells and late passage cells derived from impacted maxillary supernumerary teeth. Impacted supernumerary teeth with maxilla were extracted from 12 patients (8 males, 4 females) between 6 - 9 years old without medical history. Real-time polymerase chain reaction (PCR) was conducted to compare characterization of odontoblast cell in the 3rd and 10th passage, and between with bone inducing additive group and without additive group. Genes for odontoblasts characteristics are osteonectin (ONT), alkaline phosphatase (ALP), osteocalcin (OCN), dentin matrix protein 1 (DMP-1) and dentin sialophosphoprotein (DSPP). The level of gene expression was in a decreasing order of ONT, ALP, OCN, DMP-1 and DSPP in the 3rd passage, and in decreasing order of ONT, DMP-1, OCN, ALP, and DSPP in the 10th passage in the undifferentiation and differentiation group. The order of ONT, DMP-1, and OCN did not changed. ALP and DMP-1 were switched in order. ALP and DMP-1 may be used as important markers for differentiating between the 3rd passage and 10th passage cells. Considering that supernumerary tooth was extracted young age and the time required to cultured 10th passage was short, supernumerary tooth can be considered a useful donor site of dental pulp stem cells.

A Histopathological Study of Pulp Tissue Reactions to Glutaraldehyde and Formocresol in Puppy's Primary Teeth (Glutaraldehyde 및 Formocresol이 유견유치 치수조직에 미치는 영향에 관한 병리조직학적 연구)

  • Hur, No-Jeong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.8 no.1
    • /
    • pp.37-46
    • /
    • 1981
  • This study was undertaken to evaluate the pulpal responses to the pulp-capping materials such as glutaraldehyde and formocresol in pulpotomy technique, especially in the primary dentition. Mandibular primary canines and molars of 5 dogs (aged about 8-9 weeks)were selected for this study. The intervals of observation for histologic study of pulpotomized primary teeth with 2% glutaraldehyde, formocresol and calcium hydroxide in the usual manner ranged from 2 hours, 1 week, 2 weeks, 3 weeks and 5 weeks after experiments respectively. Each specimens were fixed with 10% formalin and decalcified in 5% nitric acid. All slides were stained with Hematorylin-Eosin and examined histopathologically. The results were as follows; 1. In calcium hydroxide groups, formation of dentin bridge was initiated in 1 week after experiments and completed in 5 weeks after experiments. 2. Formation of dentin bridge was not seen, whereas necrosis of pulp tissue was noted, in formocresol and glutaraldehyde groups. 3. Duration of tissue reactions and tissue changes were similar, in formocresol and glutaraldehyde groups. 4. In formocresol and glutaraldehyde groups, amputation surfaces of the pulp were covered with blood clots, beneath which coagulation necrois was noted, but inflammatory cells were not prominent, in 2 hours and 1 week after experiments. But coagulation necrosis was proceeded to the apical portion, accompanied by infiltration of inflammatory cells, since 2 weeks after experiments. And suppuration or gangrene of the pulp tissue were noted in 3 weeks and 5 weeks groups. 5. Suppuration or gangrene of pulp seemed to provoke the resorption of dentin wall, and inflammatory changes and resorption of roots were noted in the periodontal membrane near the periapical region. 6. As compared with calcium hydroxide groups, resorption of the root was pronounced in form or cresol and glutaraldehyde groups. Effects of medicaments to the succedaneous tooth germ were not seen.

  • PDF

Relationship with Passage Time of Human Dental Pulp Stem Cells from Supernumerary Tooth by Classification (과잉치 분류에 따른 치수유래줄기세포 계대 배양 시간의 연관성)

  • Shin, Yeoseob;Kim, Jongbin;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.4
    • /
    • pp.419-426
    • /
    • 2016
  • For this research 20 supernumerary teeth impacted in the maxillary anterior have been extracted and pulp cells have been collected from them. From the collected pulp cells, total of 17 (10 males, 7 females) have been selected as subjects. From this research, the run-time of successive culture of the cell from tooth number pulp tissue was $2.91{\pm}0.29$ days. From the gathering of cells from the initial pulp tissue until gaining 80% confluency took $4.53{\pm}0.94$ which was the longest. The following successive cultures took $2.73{\pm}0.32$ days. Average runtime for female was $2.81{\pm}0.27$ days whereas male had average runtime of $2.98{\pm}0.29$ days. Average run-time for inversion was $2.94{\pm}0.30$ days and for normal location, $2.80{\pm}0.20$ days. Average runtime was $2.92{\pm}0.31$ days and other forms took $2.88{\pm}0.22$ days. In the future, follow up research would be needed to evaluate the efficiency of the cells collected from the initial passage and the latter passage as stem-cells and taking into consideration the less than 3 days'time for the subculture, it could be concluded that the research efficiency and fast cultivation would be sufficiently effective.

CONTINUED APEXOGENESIS ON TRAUMA INDUCED NONVITAL IMMATURE PERMANENT TOOTH (외상으로 실활된 미성숙 영구치에서의 계속된 치근 형성)

  • Kang, Yu-Jin;Kim, Hye-Young;Kim, Young-Jin;Kim, Hyun-Jung;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.4
    • /
    • pp.640-646
    • /
    • 2009
  • In case of luxation injuries, loss of tooth vitality is common. And in case of trauma in the immature permanent teeth, precise diagnosis of pulp necrosis is very difficult. That is because limitation in distinguishing between normal dental papilla in immature permanent teeth, transient apical breakdown(TAB), which is part of normal healing process, and apical radiolucency in pulp necrosis. Especially in non-vital immature permanent tooth, the treatment is complex and requires long time. This clinical case report shows that severely infected immature teeth with periradicular periodontitis can undergo healing and apexogenesis or maturogenesis with no definative treatment or after conservative treatment. In the cases reported, we emphasize the considerable power of regeneration of the tooth, probably due to its large number of undifferentiated mesenchymal cells in the dental papilla, pulp tissue, periodontal ligament tissues. Thus, when endodontic treatment in immature permanent teeth, over instrumentation is not recommend for preserve the apical vital stem cells.

  • PDF

Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs

  • Yang, Cheryl;Lee, Jung-Seok;Jung, Ui-Won;Seo, Young-Kwon;Park, Jung-Keug;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: In this study, we investigated the effect of silk scaffolds on one-wall periodontal intrabony defects. We conjugated nano-hydroxyapatite (nHA) onto a silk scaffold and then seeded periodontal ligament cells (PDLCs) or dental pulp cells (DPCs) onto the scaffold. Methods: Five dogs were used in this study. Bilateral 4 mm${\times}$2 mm (depth${\times}$mesiodistal width), one-wall intrabony periodontal defects were surgically created on the distal side of the mandibular second premolar and the mesial side of the mandibular fourth premolar. In each dog, four of the defects were separately and randomly assigned to the following groups: the PDLCcultured scaffold transplantation group (PDLC group), the DPC-cultured scaffold transplantation group (DPC group), the normal saline-soaked scaffold transplantation group, and the control group. The animals were euthanized following an 8-week healing interval for clinical, scanning electron microscopy (SEM), and histologic evaluations. Results: There was no sign of inflammation or other clinical signs of postoperative complications. The examination of cellseeded constructs by SEM provided visual confirmation of the favorable characteristics of nHA-coated silk scaffolds for tissue engineering. The scaffolds exhibited a firm connective porous structure in cross section, and after PDLCs and DPCs were seeded onto the scaffolds and cultured for 3 weeks, the attachment of well-spread cells and the formation of extracellular matrix (ECM) were observed. The histologic analysis revealed that a well-maintained grafted volume was present at all experimental sites for 8 weeks. Small amounts of inflammatory cells were seen within the scaffolds. The PDLC and DPC groups did not have remarkably different histologic appearances. Conclusions: These observations indicate that nHA-coated silk scaffolds can be considered to be potentially useful biomaterials for periodontal regeneration.