• Title/Summary/Keyword: Dental implantology

Search Result 74, Processing Time 0.025 seconds

Comparison of implant stability measurements between a resonance frequency analysis device and a modified damping capacity analysis device: an in vitro study

  • Lee, Jungwon;Pyo, Se-Wook;Cho, Hyun-Jae;An, Jung-Sub;Lee, Jae-Hyun;Koo, Ki-Tae;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.56-66
    • /
    • 2020
  • Purpose: A stability-measuring device that utilizes damping capacity analysis (DCA) has recently been introduced in the field of dental implantology. This study aimed to evaluate the sensitivity and reliability of this device by measuring the implant stability of ex vivo samples in comparison with a resonance frequency analysis (RFA) device. Methods: Six implant beds were prepared in porcine ribs using 3 different drilling protocols to simulate various implant stability conditions. Thirty-six pork ribs and 216 bone-level implants measuring 10 mm in height were used. The implant beds were prepared using 1 of the following 3 drilling protocols: 10-mm drilling depth with a 3.5-mm-diameter twist drill, 5-mm drilling depth with a 4.0-mm-diameter twist drill, and 10-mm drilling depth with a 4.0-mm-diameter twist drill. The first 108 implants were external-connection implants 4.0 mm in diameter, while the other 108 implants were internal-connection implants 4.3 mm in diameter. The peak insertion torque (PIT) during implant placement, the stability values obtained with DCA and RFA devices after implant placement, and the peak removal torque (PRT) during implant removal were measured. Results: The intraclass correlation coefficients (ICCs) of the implant stability quotient (ISQ) results obtained using the RFA device at the medial, distal, ventral, and dorsal points were 0.997, 0.994, 0.994, and 0.998, respectively. The ICCs of the implant stability test (IST) results obtained using the DCA device at the corresponding locations were 0.972, 0.975, 0.974, and 0.976, respectively. Logarithmic relationships between PIT and IST, PIT and ISQ, PRT and IST, and PRT and ISQ were observed. The mean absolute difference between the ISQ and IST values on a Bland-Altman plot was -6.76 (-25.05 to 11.53, P<0.05). Conclusions: Within the limits of ex vivo studies, measurements made using the RFA and DCA devices were found to be correlated under a variety of stability conditions.

Biomechanics and Occlusion for Implant-Supported Prosthesis (임플란트 보철의 생역학과 교합)

  • Koo, Cheol-Ihn;Kwak, Jong-Ha;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.2
    • /
    • pp.127-144
    • /
    • 2002
  • There is an increasing appreciation of the vital role that biomechanics play in the performance of oral implant. The aim of this article is to provide some basic principles that will allow a clinician to formulate a biomechanically valid treatment plan. However, at this point in the history of oral implantology, the clinician should realize that we do not know enough to provide absolute biomechanical rules that will guarantee success of all implants in all situations. To examine the biomechanical questions, one must begin with an analysis of the distribution of biting forcess to implants. Related topics, such as stress transfer to surrounding tissues and interrelationships between bone biology and mechanical loading are major subjects, deserving a separate discussion. Once rigid fixation, angulation, crestal bone level, contour, and gingival health are achieved, stress beyond physiologic limits is the primary cause of initial bone loss around implants. The restoring dentist has specific responsibilities to reduce overload to the bone-implant interface. These include proper diagnosis, leading to a treatment plan designed with adequate retention and form, and progressive loading to improve the amount and density of bone and further reduce the risk of stress beyond physiologic limits. The major remaining factor is the development of occlusal concept in harmony with the rest of the stomagnetic system.

Clinical application of a new systematic implant planning concept: A Clinical Report

  • Jeong, Seung-Mi;Chung, Chae-Heon;Engelke, Wilfried
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.6
    • /
    • pp.814-820
    • /
    • 2000
  • Statement of Problem. Commonly used classification systems do not inform for dentists the dimension of the available bone at a potential implant site although regarding a variety of morphologic and pathophysiologic aspects using schematic graphs. However, for the implantologist the availability of bone substance is most important independent whether it concerns the jaw basis or the alveolus. Purpose of Study. The present article refers to a new evaluation form, to analyze the available bone with regard to optional immediate loading site by site. According to a new systematic implant planning concept will be presented in two case reports. Results. The feasibility of the classification for planning and documentation of immediately loaded implants is presented in two case reports. Conclusion. The factor of bone support for immediate functional stability is important in dental implantology. The new systematic implant planning helps to systematically estimate the dimension (ASCIi classification) of the alveolus site by site to evaluate the possibility of immediate loading. The Gottingen classification thus aids to determine the degree of stability that can be expected for the planned solution.

  • PDF

Effects of the cone-beam computed tomography protocol on the accuracy and image quality of root surface area measurements: An in vitro study

  • Chanikarn Intarasuksanti;Sangsom Prapayasatok;Natnicha Kampan;Supassara Sirabanchongkran;Pasuk Mahakkanukrauh;Thanapat Sastraruji;Pathawee Khongkhunthian;Kachaphol Kuharattanachai;Kanich Tripuwabhrut
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.325-333
    • /
    • 2023
  • Purpose: The objective of this study was to evaluate and compare the accuracy and image quality of root surface area (RSA) measurements obtained with various cone-beam computed tomography (CBCT) protocols, relative to the gold standard of micro-computed tomography (CT), in an in vitro setting. Materials and Methods: Four dry human skulls were scanned using 8 different protocols, with voxel sizes of 0.15 mm, 0.3 mm, and 0.4 mm. Three-dimensional models of the selected teeth were constructed using CBCT and microCT protocols, and the RSA was automatically measured by the image-processing software. The absolute difference in the percentage of the RSA(%ΔRSA) was calculated and compared across the 8 CBCT protocols using repeatedmeasures analysis of variance. Finally, image quality scores of the RSA measurements were computed and reported in terms of percent distribution. Results: No significant differences were observed in the %ΔRSA across the 8 protocols (P>0.05). The deviation in %ΔRSA ranged from 1.51% to 4.30%, with an increase corresponding to voxel size. As the voxel size increased, the image quality deteriorated. This decline in quality was particularly noticeable at the apical level of the root, where the distribution of poorer scores was most concentrated. Conclusion: Relative to CBCT protocols with voxel sizes of 0.15mm and 0.3mm, the protocols with a voxel size of 0.4 mm demonstrated inferior image quality at the apical levels. In spite of this, no significant discrepancies were observed in RSA measurements across the different CBCT protocols.

Volumetric analysis of mucous retention cysts in the maxillary sinus: A retrospective study using cone-beam computed tomography

  • Hung, Kuofeng;Hui, Liuling;Yeung, Andy Wai Kan;Wu, Yiqun;Hsung, Richard Tai-Chiu;Bornstein, Michael M.
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.117-127
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the volumetric characteristics of mucous retention cysts(MRCs) in the maxillary sinus and to analyze potential associations of MRCs with dentoalveolar pathologies. Materials and Methods: Cone-beam computed tomography (CBCT) scans exhibiting bilateral maxillary sinuses that were acquired from January 2016 to February 2019 were initially screened. A total of 227 scans(454 sinuses) that fulfilled the inclusion criteria were included. The presence, location, and volumetric characteristics of the diagnosed MRCs were evaluated on CBCT images using the 3D-Slicer software platform. The presence of MRCs was correlated with potential influencing factors including age, sex, and dentoalveolar pathology. For MRCs located on the sinus floor, factors with a potential impact on the volume, surface, and diameter were analyzed. Results: An MRC was present in 130 (28.6%) of the 454 sinuses. Most MRCs were located on the sinus walls and floor. The mean MRC volume, surface, and diameter were 551.21±1368.04 mm3, 228.09±437.56 mm2, and 9.63±5.40 mm, respectively. Significantly more sinuses with associated endodontically treated teeth/periapical lesions were diagnosed with an MRC located on the sinus floor. For MRCs located on the sinus floor, endodontic status exhibited a significant association with increased volume, surface, and diameter. Conclusion: Periapical lesions might be a contributing factor associated with the presence and volume of MRCs located on the sinus floor. The 3D-Slicer software platform was found to be a useful tool for clinicians to analyze the size of MRCs before surgical interventions such as sinus floor elevation procedures.

Development of Scaffold for Cell Attachment and Evaluation of Tissue Regeneration Using Stem Cells Seeded Scaffold (세포부착을 위한 스캐폴드 개발 및 줄기세포를 적용한 스캐폴드의 조직재생능력 평가)

  • You, Hoon;Song, Kyung-Ho;Lim, Hyun-Chang;Lee, Jung-Seok;Yun, Jeong-Ho;Seo, Young-Kwon;Jung, Ui-Won;Lee, Yong-Keun;Oh, Nam-Sik;Choi, Seong-Ho
    • Implantology
    • /
    • v.18 no.2
    • /
    • pp.120-138
    • /
    • 2014
  • Purpose: The purpose of this study was to review the outcomes of a series of studies on tissue regeneration conducted in multiple institutions including the Department of Periodontology, College of Dentistry, Yonsei University. Materials and Methods: Studies were performed divided into the following three subjects; 1) Development of three-dimensional nano-hydroxyapatite (n-HA) scaffold for facilitating drug release and cell adhesion. 2) Synergistic effects of bone marrow-derived mesenchymal stem cells (BMMSC) application simultaneously with platelet-rich plasma (PRP) on HA scaffolds. 3) The efficacy of silk scaffolds coated with n-HA. Also, all results were analyzed by subjects. Results: Hollow hydroxyapatite spherical granules were found to be a useful tool for the drug release and avidin-biotin binding system for cell attachment. Also, BMMSC simultaneously with PRP applied in an animal bone defect model was seen to be more synergistic than in the control group. But, the efficacy of periodontal ligament cells and dental pulp cells with silk scaffolds could not be confirmed in the initial phase of bone healing. Conclusion: The ideal combination of three elements of tissue engineering-scaffolds, cells and signaling molecules could be substantiated due to further investigations with the potentials and limitations of the suggested list of studies.

The study on success rate of single implant replacing the mandibular first and second molars (하악 제1, 2대구치 단일 임플란트의 생존율에 관한 연구)

  • Jung, Taek-Gyun;Paeng, Joon-Young;Cho, Jin-Hyun;Lee, Sang-Han
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.252-260
    • /
    • 2013
  • Purpose: After the introduction of concept of osteointegration, dental implantology have been successful procedure in the dental field. Recently, it has shown successful results when used to restore single tooth missing. Considering the difference in bone quality of the mandible and maxilla, and the increased occlusal force in the posterior region, the success rates in each region may be different. In this study, success rates of single implants placed in the mandibular first and second molar areas were analyzed. Materials and methods: The subjects were patients (284 patients, 308 implants) who had been operated with single implant installation from 2002 to 2009 in seven dental clinics in Daegu city. One hundred sixty eight implants were placed in the mandibular 1st molar and 140 implants were placed in the mandibular 2nd molar. They were analyzed according to implant site, age, sex, length and diameter. Results: The survival rates of single implant of this study were 97.6% in the mandibular 1st molar and 92.9% in the mandibular 2nd molar. In the mandibular 1st molar, 4 implants were failed. In the mandibular, 2nd molar, 10 implants were failed. Conclusion: The restoration of the mandibular 1st molar using single implant was found to be clinically acceptable treatment and showed higher survival rate than mandibular 2nd molar single implant. Single implant in mandibular 2nd molar needs careful consideration of poor bone quality, risk of overloading and anatomical structure of the mandible.

Osseointegration of Ceramics & Zirconia : A Review of Literature (세라믹과 지르코니아의 골유착에 관한 고찰)

  • Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.319-326
    • /
    • 2012
  • For many years, ceramics have been used in fixed prosthodontics for achieving optimal esthetics. but, they have another use as well. Many studies today show ceramics can be used for biomaterials. In the beginning researchers made a start in the study of aluminium oxide and sapphire for biomaterial. The appearance of Zirconia began a new phase of research. Zirconia was introduced into implantology as an alternative to titanium, because of its white color, good mechanical properties and superior biocompatibility. But it is not easy to surface treatment in comparison with titanium. To overcome the limitation, interconnected porous bodies of zirconia were fabricated by sintering technique. And the technique of coating was developed. Therefore, some zirconia implants are currently available. It is thought that Research of biomaterials as a variety of puposes for the use of zirconia is looking very promising. The purpose of this paper reviews are to evaluation of zirconia as biomaterials.

STRESS DISTRIBUTION PATTERN OF THE DIFFERENT DIAMETER AND LENGTH OF SHORT IMPLANTS ACCORDING TO THE BONE QUALITY : 3-D FINITE ELEMENTS ANALYSIS (상이한 골질과 제원에 따른 짧은 임프란트의 응력 분포: 3차원 유한 요소 분석)

  • Kim, Han-Koo;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.116-126
    • /
    • 2009
  • The use of short implants has been accepted risky from biomechanical point of view. However, short implants appear to be a long term viable solution according to recent clinical reports. The purpose of this study was to investigate the effect of different diameter and length of implant size to the different type of bone on the load distribution pattern. Stress analysis was performed using 3-dimensional finite element analysis(3D-FEA). A three-dimensional linear elastic model was generated. All implants modeled were of the various diameter(${\phi}4.0$, 4.5, 5.0 and 6.0 mm) and varied in length, at 7.0, 8.5 and 10.0 mm. Each implant was modeled with a titanium abutment screw and abutment. The implants were seated in a supporting D2 and D4 bone structure consisting of cortical and cancellous bone. An amount of 100 N occlusal load of vertical and $30^{\circ}$ angle to axis of implant and to buccolingual plane were applied. As a result, the maximum equivalent stress of D2 and D4 bones has been concentrated upper region of cortical bone. As the width of implant is increased, the equivalent stress is decreased in cancellous bone and stress was more homogeneously distributed along the implants in all types of bone. The short implant of diameter 5.0mm, 6.0mm showed effective stress distribution in D2 and D4 bone. The oblique force of 100N generated more concentrated stress on the D2 cortical bone. Within the limitations of this study, the use of short implant may offer a predictable treatment method in the vertically restricted sites.

Clinical reliability of zirconium abutment in implant restorations in the English and Korean literature

  • Yu, Su-Been;Song, Bong-Gyu;Cheon, Kyeong-Jun;Kim, Ju-Won;Kim, Young-Hee;Yang, Byoung-Eun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.26.1-26.10
    • /
    • 2018
  • Background: This study aimed to evaluate the mechanical, biological, and esthetic stability of a zirconium abutment according to evidence-based dentistry. Main text: An electronic search was performed. Domestic studies were found using the keywords "zirconia abutments" and "zirconium abutment" in KMbase, KoreaMed, and the National Assembly Library, and international studies were found using the same keywords in PubMed. All identified studies were divided by evidence level from the viewpoint of the research type utilizing the evidence-based review manual. A total of 102 domestic studies (with Korean language) were found, and 9 of these studies were selected. In these nine studies, 3 had evidence level 3 and 6 had evidence level 4. A total of 97 international studies (with English language) were found, and 19 were selected. Among these 19 studies, 5 had evidence level 2 and 7 had evidence level 3, whereas the remainder had evidence level 4. According to the studies, zirconium abutments are mechanically, biologically, and esthetically stable, but the evidence level of these studies is low, and the follow-up duration is no longer than 5 years. Conclusions: All examined studies verified the mechanical stability of zirconium abutments for a period no longer than 5 years. Therefore, a long-term clinical observation is needed. Zirconium abutments are thought to be biologically stable, but they are not superior to titanium abutments. As the esthetic stability of such abutments had a low evidence level in the studies that examined here, a much higher evidence level is needed.