• Title/Summary/Keyword: Dental biofilms

Search Result 50, Processing Time 0.026 seconds

Preliminary study on the diversity and quantity analysis of oral bacteria according to the sampling methods (구강 세균 채취법에 따른 세균의 다양성과 양 분석을 위한 예비 연구)

  • Seon-Ju Sim;Ji-Hye Kim;Hye-Sun Shin
    • Journal of Korean society of Dental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.131-139
    • /
    • 2024
  • Objectives: Oral bacterial samples included subgingival, supragingival, and saliva plaques. As the diversity and number of microorganisms deffer depending on the area of the oral cavity and the method used, an appropriate and reliable collection method is important. The present study investigated oral bacterial sampling methods. Methods: Supragingival dental plaque was collected from the buccal and lingual tooth surfaces of study participants using sterilized cotton swabs. Plaques were collected from the subgingival area using a sterilized curette. Bacterial genomic DNA was extracted using MagNA Pure 96 DNA and Viral NA low-volume kits. Real-time polymerase chain reaction (PCR) was performed using the PowerCheckTM Periodontitis Pathogens Multiplex Real-time PCR kit. Results: Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Fusobacterium nucleatum of the orange complex were not observed in the subgingival biofilms of all study participants. For Porphyromonas. gingivalis, a significant correlation was observed between supragingival, subgingival, and total tooth surface biofilms. Compared to the supragingival and subgingival biofilmss, total tooth surface biofilm exhibited the highest bacterial count when the inswabbing method was used. Conclusions: Based on these findings, the supragingival swab method is recommended for oral bacterial research.

Clinical efficacy of activated irrigation in endodontics: a focused review

  • Amelia Wan Tin Cheung;Angeline Hui Cheng Lee;Gary Shun Pan Cheung
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.10.1-10.16
    • /
    • 2021
  • Root canal debridement, which includes the removal of infected tissues and microbial biofilms, is considered the corner stone of root canal treatment. Chemical adjuncts play a multitude of functions in this regard, as tissue solvents, antimicrobial agents and for removing the smear layer. These adjuncts (irrigants) are usually delivered using a syringe and needle. With increasing knowledge of the complexity of root canal anatomy and tenacity of microbial biofilms, the need for strategies that potentiate the action of these irrigants within the root canal system cannot be overemphasized. Several such activated irrigation strategies exist. The aim of this review is to comprehensively discuss the different irrigant activation methods from the context of clinical studies.

Comparison of Antimicrobial Activity of Electrolyzed Water Using Various Electrodes against Biofilm of Oral Pathogens

  • Yoo, Yun S;Shin, Hyun-Seung;Lee, Sung-Hoon
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.135-141
    • /
    • 2015
  • Biofilms of oral microbes can cause various diseases in the oral cavity, such as dental caries, periodontitis and mucosal disease. Electrolyzed water generated by an electric current passed via water using a metal electrode has an antimicrobial effect on pathogenic bacteria which cause food poisoning. This study investigated the antimicrobial activity of electrolyzed waters using various metal electrodes on the floatage and biofilms of oral microbes. The electrolyzed water was generated by passing electric current using copper, silver and platinum electrodes. The electrolyzed water has a neutral pH. Streptococcus mutans, Porphyromonas gingivalis and Tannerella forsythia were cultured, and were used to form a biofilm using specific media. The floatage and biofilm of the microbes were then treated with the electrolyzed water. The electrolyzed water using platinum electrode (EWP) exhibited strong antimicrobial activity against the floatage and biofilm of the oral microbes. However, the electrolyzed water using copper and silver electrodes had no effect. The EWP disrupted the biofilm of oral microbes, except the S. mutans biofilm. Comparing the different electrolyzed waters that we created the platinum electrode generated water may be an ideal candidate for prevention of dental caries and periodontitis.

Silver nanoparticles in endodontics: recent developments and applications

  • Aysenur Oncu;Yan Huang ;Gulin Amasya ;Fatma Semra Sevimay;Kaan Orhan;Berkan Celikten
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.3
    • /
    • pp.38.1-38.13
    • /
    • 2021
  • The elimination of endodontic biofilms and the maintenance of a leak-proof canal filling are key aspects of successful root canal treatment. Several materials have been introduced to treat endodontic disease, although treatment success is limited by the features of the biomaterials used. Silver nanoparticles (AgNPs) have been increasingly considered in dental applications, especially endodontics, due to their high antimicrobial activity. For the present study, an electronic search was conducted using MEDLINE (PubMed), the Cochrane Central Register of Controlled Trials (CENTRAL), Google Scholar, and EMBASE. This review provides insights into the unique characteristics of AgNPs, including their chemical, physical, and antimicrobial properties; limitations; and potential uses. Various studies involving different application methods of AgNPs were carefully examined. Based on previous clinical studies, the synthesis, means of obtaining, usage conditions, and potential cytotoxicity of AgNPs were evaluated. The findings indicate that AgNPs are effective antimicrobial agents for the elimination of endodontic biofilms.

Natural Product Research in Dental Caries Prevention (임상가를 위한 특집 1 - 충치예방과 관련된 천연물(natural products) 연구의 현황)

  • Jeon, Jae-Gyu
    • The Journal of the Korean dental association
    • /
    • v.50 no.9
    • /
    • pp.544-551
    • /
    • 2012
  • Dental caries is a biofilm-related oral disease, and continues to afflict the majority of the world's population. Although fluoride, delivered in various modalities, remains the mainstay for the prevention of caries, additional approaches are required to enhance its effectiveness. Natural products have been used as a major source of innovative and effective therapeutic agents throughout human history, and have shown promise as a source of components for the development of new drugs. In addition. studies using natural products to prevent or treat oral diseases such as dental caries have received a great deal of attention. A number of compounds, such as epicatechin, allicin and sanguinarine, isolated from natural products, have also been investigated for their efficacy against oral microbial pathogens. However, the use of natural products as an anti-caries agent in clinical practice was controversial because of inadequate knowledge concerning their mechanisms of action and chemical characterization. This study focuses on the current knowledge of natural products in dental caries prevention and suggests natural products are importance sources for the prevention of dental caries.

Assessment of Acidogenic Potential for Dental Biofilms by Periodontal Health Condition (치주 건강 상태에 따른 치면세균막의 산 생성능력 평가에 대한 연구)

  • Min, Ji-Hyun;Yoon, Hong-Cheol;Kim, Jong-Kwan;Kang, Si-Mook;Kim, Baek-Il
    • Journal of dental hygiene science
    • /
    • v.15 no.2
    • /
    • pp.202-208
    • /
    • 2015
  • The aim of this retrospective study was to evaluate the relationship between periodontal health condition and the results of a new method such as Cariview which could evaluate the acidity of dental biofilms. Fifty four subjects more than 20 years old were selected for the candidates of this study. The periodontal health conditions of the candidates were divided into 4 groups according to the assessment of X-ray and Quantitative Light-induced Fluorescence-Digital (QLF-D; Inspektor Research Systems BV) images; gingivitis, slight periodontitis, moderate periodontitis, severe periodontitis. The biofilm acidogenicity of each subject was examined using Cariview (All in ONE BIO) according to manufacturer's instruction, and the Cariview score was calculated. The mean differences of Cariview score between 4 groups of periodontal health condition were examined by ANCOVA test with the covariance of decayed, missing, and filled teeth (DMFT) index. As a result, the mean Cariview score was different, however it was not significantly different from the 4 groups (p=0.12). The mean score was the lowest in the gingivitis group ($40.54{\pm}11.01$), and the highest in slight periodontitis group ($57.26{\pm}20.51$). In conclusion, the significant mean differences were not confirmed in Cariview score according to the periodontal health condition.

Anti-Biofilm Effect of Egg Yolk Phosvitin by Inhibition of Biomass Production and Adherence Activity against Streptococcus mutans

  • Kim, Hyeon Joong;Lee, Jae Hoon;Ahn, Dong Uk;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.1001-1013
    • /
    • 2020
  • The formation of biofilms on the enamel surface of teeth by Streptococcus mutans is an important step in dental plaque formation, demineralization, and early caries because the biofilm is where other bacteria involved in dental caries attach, grow, and proliferate. The objectives of this study were to determine the effect of phosvitin (PSV) on the biofilm formation, exopolysaccharides (EPS) production, adherence activity of S. mutans, and the expression of genes related to the compounds essential for biofilm formation (quorum-sensing inducers and components of biofilm matrix) by S. mutans. PSV significantly reduced the biofilm-forming activity of S. mutans and increased the degradation of preformed biofilms by S. mutans. PSV inhibited the adherence activity of S. mutans by 31.9%-33.6%, and the production of EPS by 62%-65% depending upon the strains and the amount of PSV added. The expressions of genes regulating the production of EPS and the quorum-sensing-inducers (gtfA, gtfD, ftf, relA, vicR, brpA, and comDE) in all S. mutans strains were down-regulated by PSV, but gtfB was down-regulated only in S. mutans KCTC 5316. Therefore, the anti-biofilm-forming activity of PSV was accomplished through the inhibition of biofilm formation, adherence activity, and the production of quorum-sensing inducers and EPS by S. mutans.

Adhesion and Biofilm Formation Abilities of Bacteria Isolated from Dental Unit Waterlines (치과용 유니트 수관에서 분리한 세균의 부착 및 바이오필름 형성 능력)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.18 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • The purpose of our study is to compare the adhesion and biofilm formation abilities of isolates from water discharged from dental unit waterlines (DUWLs). Bacteria were isolated from a total of 15 DUWLs. Twelve isolates were selected for the experiment. To confirm the adhesion ability of the isolates, each isolate was attached to a glass coverslip using a 12-well plate. Plates were incubated at $26^{\circ}C$ for 7 days, and the degree of adhesion of each isolate was scored. To verify the biofilm formation ability of each isolate, biofilms were allowed to form on a 96-well polystyrene flat-bottom microtiter plate. The biofilm accumulations of all isolates formed at $26^{\circ}C$ for 7 days were identified and compared. A total of 56 strains were isolated from 15 water samples including 12 genera and 31 species. Of the 56 isolates, 12 isolates were selected according to the genus and used in the experiment. Sphingomonas echinoides, Methylobacterium aquaticum, and Cupriavidus pauculus had the highest adhesion ability scores of +3 among 12 isolates. Among these three isolates, the biofilm accumulation of C. pauculus was the highest and that of S. echinoides was the third-most abundant. The lowest biofilm accumulations were identified in Microbacterium testaceum and M. aquaticum. Most isolates with high adhesion ability also exhibited high biofilm formation ability. Analysis of adhesion and biofilm formation of the isolates from DUWLs can provide useful information to understand the mechanism of DUWL biofilm formation and development.

Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens

  • Song, Hyun-Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.72-78
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the phototoxic effects of blue light exposure on periodontal pathogens in both planktonic and biofilm cultures. Methods: Strains of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis, in planktonic or biofilm states, were exposed to visible light at wavelengths of 400.520 nm. A quartz-tungsten-halogen lamp at a power density of $500mW/cm^2$ was used for the light source. Each sample was exposed to 15, 30, 60, 90, or 120 seconds of each bacterial strain in the planktonic or biofilm state. Confocal scanning laser microscopy (CSLM) was used to observe the distribution of live/dead bacterial cells in biofilms. After light exposure, the bacterial killing rates were calculated from colony forming unit (CFU) counts. Results: CLSM images that were obtained from biofilms showed a mixture of dead and live bacterial cells extending to a depth of $30-45{\mu}m$. Obvious differences in the live-to-dead bacterial cell ratio were found in P. gingivalis biofilm according to light exposure time. In the planktonic state, almost all bacteria were killed with 60 seconds of light exposure to F. nucleatum (99.1%) and with 15 seconds to P. gingivalis (100%). In the biofilm state, however, only the CFU of P. gingivalis demonstrated a decreasing tendency with increasing light exposure time, and there was a lower efficacy of phototoxicity to P. gingivalis as biofilm than in the planktonic state. Conclusions: Blue light exposure using a dental halogen curing unit is effective in reducing periodontal pathogens in the planktonic state. It is recommended that an adjunctive exogenous photosensitizer be used and that pathogens be exposed to visible light for clinical antimicrobial periodontal therapy.

Effects of Bamboo Salt with Sodium Fluoride on the Prevention of Dental Caries

  • Lee, Hye-Jin;Park, A-Reum;Oh, Han-Na
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.288-293
    • /
    • 2019
  • Background: Dental caries is one of several prevalent oral diseases caused by dental plaque biofilms. This study evaluated the anti-cariogenic effects of a bamboo salt (BS) and sodium fluoride (NaF) mixture on oral bacteria. Methods: The effects of several mixtures of NaF and BS on acid production, growth, and adhesion to glass beads of Streptococcus mutans, and their anti-cariogenic properties were investigated. The growth of S. mutans was measured according to optical density at 3, 6, 9, 12, 15, 18, and 24 hours after treatment using spectrophotometry at a wavelength of 600 nm, while pH was measured using a pH meter. Adhesion of S. mutans was measured according to the weight of glass beads from each group before and after incubation. Gene expression was measured using real-time polymerase chain reaction. Acid production and growth patterns of S. mutans were compared using repeated measures analysis of variance, followed by Scheffe's post-hoc test. The Kruskal-Wallis test was used to compare adhesion, followed by the Mann-Whitney test. Gene expression in the experimental and control samples was compared using the Student's t-test. Results: Growth, acid production, and adhesion of S. mutans were inhibited in all experimental groups. Expression of gft and fructosyltransferase in S. mutans was inhibited in all groups. A mixture of NaF and BS significantly reduced growth, acid production, adhesion, and gene expression of S. mutans compared with the other groups. Conclusion: Results of the present study demonstrated that a mixture of NaF and BS was useful as a mouth rinse in preventing dental caries.