• 제목/요약/키워드: Dental biofilms

검색결과 50건 처리시간 0.021초

A comparative study of the prevalence of Helicobacter pylori in the oral biofilms of a group of dental and non-dental undergraduates from Sri Lanka

  • Mallikaarachchi, MADKS;Rajapakse, Sanath;Gunawardhana, KSND;Jayatilake, JAMS
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.60-65
    • /
    • 2021
  • Dental health care workers (DHCW) are at a risk of occupational exposure to Helicobacter pylori from the aerosolized oral biofilms and saliva of patients. We designed this study to investigate the prevalence of H. pylori in the oral biofilms of a group of dental and non-dental undergraduates from Sri Lanka. After obtaining informed consent, oral biofilms were collected from 38 dental undergraduates (19 males and 19 females) undergoing clinical training and 33 non-dental undergraduates (14 males and 19 females). The participants were in the age range of 22-27 years and had healthy periodontium. Total DNA from the oral biofilms were extracted, and H. pylori DNA was detected using polymerase chain reaction (PCR) amplification of 16S rRNA gene of H. pylori using JW22-JW23 primers, and the results were confirmed using PCR amplification of H. pylori-urease specific HPU1-HPU2 primers. Out of 71 participants, 11 (28.95%) dental and 3 (9.09%) non-dental undergraduates had H. pylori in their oral biofilms indicating an overall prevalence rate of 19.72% (14/71). Thus, the prevalence of H. pylori in oral biofilms was significantly higher in dental undergraduates than in non-dental undergraduates (p < 0.05). An odds ratio of 4.07 indicated that dental undergraduates were four times more likely to harbor H. pylori in their oral biofilms than non-dental undergraduates. Foregoing data support the fact that there may be greater occupational risk of exposure to H. pylori for dental undergraduates during clinical training than that for non-dental undergraduates, warranting meticulous infection control practices during clinical dentistry.

Managing oral biofilms to avoid enamel demineralization during fixed orthodontic treatment

  • Jung-Sub An;Bum-Soon Lim;Sug-Joon Ahn
    • 대한치과교정학회지
    • /
    • 제53권6호
    • /
    • pp.345-357
    • /
    • 2023
  • Enamel demineralization represents the most prevalent complication arising from fixed orthodontic treatment. Its main etiology is the development of cariogenic biofilms formed around orthodontic appliances. Ordinarily, oral biofilms exist in a dynamic equilibrium with the host's defense mechanisms. However, the equilibrium can be disrupted by environmental changes, such as the introduction of a fixed orthodontic appliance, resulting in a shift in the biofilm's microbial composition from non-pathogenic to pathogenic. This alteration leads to an increased prevalence of cariogenic bacteria, notably mutans streptococci, within the biofilm. This article examines the relationships between oral biofilms and orthodontic appliances, with a particular focus on strategies for effectively managing oral biofilms to mitigate enamel demineralization around orthodontic appliances.

구강세정제가 다중 구강 바이오필름 모델에 미치는 영향 (Effects of antibacterial mouth rinses on multiple oral biofilms model)

  • Soo-Kyung Jun;Young-Suk Choi
    • 한국치위생학회지
    • /
    • 제23권4호
    • /
    • pp.209-218
    • /
    • 2023
  • 연구목적: 실험실내에서 성분이 다른 구강세정제가 오래 형성된 다중 구강 바이오필름에 미치는 항균효과를 확인하였다. 연구방법: 구강세정제의 항균효과를 ATP, CFU로 확인하였고, 다중 구강 바이오필름을 형성시킨 sHA 디스크를 구강세정제로 처리한 후 SEM을 이용하여 형태학적 모양을 관찰하였다. 총RNA는 P. intermedia의 바이오필름에서 추출하였고 RNA sequencing 분석을 하였다. 연구결과: 대조군과 구강세정제 4개를 비교한 CFU 측정 결과에서 오래 형성된 다중 구강 바이오필름은 39.0%로부터 95.7%까지 감소한 것으로 나타났다(p<0.05). 에센셜 오일 처리 후 구강생물막 세포들은 크기가 변하고 일부 파열되고 작은 세포 파편 조각도 나타났다. 에센셜 오일로 처리 후 P. intermedia 유전자 발현은 RNA 전사와 단백질 번역 관련 유전자에서 유의한 변화를 보였다. 결론: 성분이 다른 구강세정제는 항균효과를 가지며 표면 구조 및 유전자 발현에 영향을 미친다.

A periodontitis-associated multispecies model of an oral biofilm

  • Park, Jong Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제44권2호
    • /
    • pp.79-84
    • /
    • 2014
  • Purpose: While single-species biofilms have been studied extensively, we know notably little regarding multispecies biofilms and their interactions. The purpose of this study was to develop and evaluate an in vitro multispecies dental biofilm model that aimed to mimic the environment of chronic periodontitis. Methods: Streptococcus gordonii KN1, Fusobacterium nucleatum ATCC23726, Aggregatibacter actinomycetemcomitans ATCC33384, and Porphyromonas gingivalis ATCC33277 were used for this experiment. The biofilms were grown on 12-well plates with a round glass slip (12 mm in diameter) with a supply of fresh medium. Four different single-species biofilms and multispecies biofilms with the four bacterial strains listed above were prepared. The biofilms were examined with a confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM). The minimum inhibitory concentrations (MIC) for four different planktonic single-species and multispecies bacteria were determined. The MICs of doxycycline and chlorhexidine for four different single-species biofilms and a multispecies biofilm were also determined. Results: The CLSM and SEM examination revealed that the growth pattern of the multispecies biofilm was similar to those of single-species biofilms. However, the multispecies biofilm became thicker than the single-species biofilms, and networks between bacteria were formed. The MICs of doxycycline and chlorhexidine were higher in the biofilm state than in the planktonic bacteria. The MIC of doxycycline for the multispecies biofilm was higher than were those for the single-species biofilms of P. gingivalis, F. nucleatum, or A. actinomycetemcomitans. The MIC of chlorhexidine for the multispecies biofilm was higher than were those for the single-species biofilms of P. gingivalis or F. nucleatum. Conclusions: To mimic the natural dental biofilm, a multispecies biofilm composed of four bacterial species was grown. The 24-hour multispecies biofilm may be useful as a laboratory dental biofilm model system.

Effects of Microbial Communication on The Growth of Periodontopathogens

  • Lee, Chung-Koo;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • 제35권4호
    • /
    • pp.197-202
    • /
    • 2010
  • Most oral microorganisms exist as biofilms which initiate formation via the attachment of an early colonizer to host proteins on the tooth surface. Fusobacterium nucleatum act as a bridge between early and late colonizers. Dental biofilms eventually comprise dental pathogens such as Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia. To evaluate the effects of mutual interactions between oral bacteria on the growth of biofilms, periodontopathogens were co-cultured with a $0.4\;{\mu}m$ barrier. Streptococcus gordonii inhibited the growth of F. nucleatum and periodontopathogens. However, F. nucleatum, P. gingivalis and T. denticola activated the growth of other bacteria. A co-culture system of early and late colonizers could be a useful tool to further understand bacterial interactions during the development of dental biofilm.

An in vitro model of Fusobacterium nucleatum and Porphyromonas gingivalis in single- and dual-species biofilms

  • Tavares, Livia Jacovassi;Klein, Marlise Inez;Panariello, Beatriz Helena Dias;de Avila, Erica Dorigatti;Pavarina, Ana Claudia
    • Journal of Periodontal and Implant Science
    • /
    • 제48권1호
    • /
    • pp.12-21
    • /
    • 2018
  • Purpose: The goal of this study was to develop and validate a standardized in vitro pathogenic biofilm attached onto saliva-coated surfaces. Methods: Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) strains were grown under anaerobic conditions as single species and in dual-species cultures. Initially, the bacterial biomass was evaluated at 24 and 48 hours to determine the optimal timing for the adhesion phase onto saliva-coated polystyrene surfaces. Thereafter, biofilm development was assessed over time by crystal violet staining and scanning electron microscopy. Results: The data showed no significant difference in the overall biomass after 48 hours for P. gingivalis in single- and dual-species conditions. After adhesion, P. gingivalis in single- and dual-species biofilms accumulated a substantially higher biomass after 7 days of incubation than after 3 days, but no significant difference was found between 5 and 7 days. Although the biomass of the F. nucleatum biofilm was higher at 3 days, no difference was found at 3, 5, or 7 days of incubation. Conclusions: Polystyrene substrates from well plates work as a standard surface and provide reproducible results for in vitro biofilm models. Our biofilm model could serve as a reference point for studies investigating biofilms on different surfaces.

Variation in adhesion of Streptococcus mutans and Porphyromonas gingivalis in saliva-derived biofilms on raw materials of orthodontic brackets

  • Park, So-Hyun;Kim, Kyungsun;Cho, Soha;Chung, Dong-Hwa;Ahn, Sug-Joon
    • 대한치과교정학회지
    • /
    • 제52권4호
    • /
    • pp.278-286
    • /
    • 2022
  • Objective: To evaluate differences in the adhesion levels of the most common oral pathogens, Streptococcus mutans and Porphyromonas gingivalis, in human saliva-derived microcosm biofilms with respect to time and raw materials of orthodontic brackets. Methods: The samples were classified into three groups of bracket materials: 1) monocrystalline alumina ceramic (CR), 2) stainless steel metal (SS), and 3) polycarbonate plastic (PL), and a hydroxyapatite (HA) group was used to mimic the enamel surface. Saliva was collected from a healthy donor, and saliva-derived biofilms were grown on each sample. A real-time polymerase chain reaction was performed to quantitatively evaluate differences in the attachment levels of total bacteria, S. mutans and P. gingivalis at days 1 and 4. Results: Adhesion of S. mutans and P. gingivalis to CR and HA was higher than the other bracket materials (SS = PL < CR = HA). Total bacteria demonstrated higher adhesion to HA than to bracket materials, but no significant differences in adhesion were observed among the bracket materials (CR = SS = PL < HA). From days 1 to 4, the adhesion of P. gingivalis decreased, while that of S. mutans and total bacteria increased, regardless of material type. Conclusions: The higher adhesion of oral pathogens, such as S. mutans and P. gingivalis to CR suggests that the use of CR brackets possibly facilitates gingival inflammation and enamel decalcification during orthodontic treatment.

Endodontic biofilms: contemporary and future treatment options

  • Yoo, Yeon-Jee;Perinpanayagam, Hiran;Oh, Soram;Kim, A-Reum;Han, Seung-Hyun;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • 제44권1호
    • /
    • pp.7.1-7.10
    • /
    • 2019
  • Apical periodontitis is a biofilm-mediated infection. The biofilm protects bacteria from host defenses and increase their resistance to intracanal disinfecting protocols. Understanding the virulence of these endodontic microbiota within biofilm is essential for the development of novel therapeutic procedures for intracanal disinfection. Both the disruption of biofilms and the killing of their bacteria are necessary to effectively treat apical periodontitis. Accordingly, a review of endodontic biofilm types, antimicrobial resistance mechanisms, and current and future therapeutic procedures for endodontic biofilm is provided.

The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs

  • Lee, Ji-Yoon;Kim, Kyoung-Hwa;Park, Shin-Young;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Rhyu, In-Chul;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • 제49권5호
    • /
    • pp.319-329
    • /
    • 2019
  • Purpose: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. Methods: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). Results: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. Conclusions: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.