DOI QR코드

DOI QR Code

Managing oral biofilms to avoid enamel demineralization during fixed orthodontic treatment

  • Jung-Sub An (Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University) ;
  • Bum-Soon Lim (Department of Dental Biomaterials, School of Dentistry, Dental Research Institute, Seoul National University) ;
  • Sug-Joon Ahn (Department of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University)
  • Received : 2023.09.11
  • Accepted : 2023.09.12
  • Published : 2023.11.25

Abstract

Enamel demineralization represents the most prevalent complication arising from fixed orthodontic treatment. Its main etiology is the development of cariogenic biofilms formed around orthodontic appliances. Ordinarily, oral biofilms exist in a dynamic equilibrium with the host's defense mechanisms. However, the equilibrium can be disrupted by environmental changes, such as the introduction of a fixed orthodontic appliance, resulting in a shift in the biofilm's microbial composition from non-pathogenic to pathogenic. This alteration leads to an increased prevalence of cariogenic bacteria, notably mutans streptococci, within the biofilm. This article examines the relationships between oral biofilms and orthodontic appliances, with a particular focus on strategies for effectively managing oral biofilms to mitigate enamel demineralization around orthodontic appliances.

Keywords

Acknowledgement

This research was supported by a grant of Seoul National University Dental Hospital (05-2021-0136).

References

  1. Mizrahi E. Enamel demineralization following orthodontic treatment. Am J Orthod 1982;82:62-7. https://doi.org/10.1016/0002-9416(82)90548-6 
  2. Lucchese A, Gherlone E. Prevalence of white-spot lesions before and during orthodontic treatment with fixed appliances. Eur J Orthod 2013;35:664-8. https://doi.org/10.1093/ejo/cjs070 
  3. Sharab L, Loss C, Jensen D, Kluemper GT, Alotaibi M, Nagaoka H. Prevalence of white spot lesions and gingival index during orthodontic treatment in an academic setting. Am J Orthod Dentofacial Orthop 2023;163:835-42. https://doi.org/10.1016/j.ajodo.2022.08.023 
  4. Sonesson M, Bergstrand F, Gizani S, Twetman S. Management of post-orthodontic white spot lesions: an updated systematic review. Eur J Orthod 2017;39:116-21. https://doi.org/10.1093/ejo/cjw023 
  5. Ulukapi H, Koray F, Efes B. Monitoring the caries risk of orthodontic patients. Quintessence Int 1997;28:27-9. https://pubmed.ncbi.nlm.nih.gov/10332351/  10332351
  6. Babaahmady KG, Challacombe SJ, Marsh PD, Newman HN. Ecological study of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus spp. at sub-sites from approximal dental plaque from children. Caries Res 1998;32:51-8. https://doi.org/10.1159/000016430 
  7. Ahn SJ, Lim BS, Yang HC, Chang YI. Quantitative analysis of the adhesion of cariogenic streptococci to orthodontic metal brackets. Angle Orthod 2005;75:666-71. https://pubmed.ncbi.nlm.nih.gov/16097239/ 
  8. Ahn SJ, Lim BS, Lee YK, Nahm DS. Quantitative determination of adhesion patterns of cariogenic streptococci to various orthodontic adhesives. Angle Orthod 2006;76:869-75. https://pubmed.ncbi.nlm.nih.gov/17029524/ 
  9. Ahn SJ, Lee SJ, Lim BS, Nahm DS. Quantitative determination of adhesion patterns of cariogenic streptococci to various orthodontic brackets. Am J Orthod Dentofacial Orthop 2007;132:815-21. https://doi.org/10.1016/j.ajodo.2005.09.034 
  10. Lim BS, Lee SJ, Lee JW, Ahn SJ. Quantitative analysis of adhesion of cariogenic streptococci to orthodontic raw materials. Am J Orthod Dentofacial Orthop 2008;133:882-8. https://doi.org/10.1016/j.ajodo.2006.07.027 
  11. Lee SP, Lee SJ, Lim BS, Ahn SJ. Surface characteristics of orthodontic materials and their effects on adhesion of mutans streptococci. Angle Orthod 2009;79:353-60. https://doi.org/10.2319/021308-88.1 
  12. Ahn SJ, Lim BS, Lee SJ. Surface characteristics of orthodontic adhesives and effects on streptococcal adhesion. Am J Orthod Dentofacial Orthop 2010;137:489-95; discussion 13A. https://doi.org/10.1016/j.ajodo.2008.05.015 
  13. Ahn SJ, Cho EJ, Oh SS, Lim BS. The effects of orthodontic bonding steps on biofilm formation of Streptococcus mutans in the presence of saliva. Acta Odontol Scand 2012;70:504-10. https://doi.org/10.3109/00016357.2011.640277 
  14. Park JW, Song CW, Jung JH, Ahn SJ, Ferracane JL. The effects of surface roughness of composite resin on biofilm formation of Streptococcus mutans in the presence of saliva. Oper Dent 2012;37:532-9. https://doi.org/10.2341/11-371-L 
  15. Jung WS, Kim H, Park SY, Cho EJ, Ahn SJ. Quantitative analysis of changes in salivary mutans streptococci after orthodontic treatment. Am J Orthod Dentofacial Orthop 2014;145:603-9. https://doi.org/10.1016/j.ajodo.2013.12.025 
  16. Jung WS, Yang IH, Lim WH, Baek SH, Kim TW, Ahn SJ. Adhesion of mutans streptococci to self-ligating ceramic brackets: in vivo quantitative analysis with real-time polymerase chain reaction. Eur J Orthod 2015;37:565-9. https://doi.org/10.1093/ejo/cju090 
  17. An JS, Kim K, Cho S, Lim BS, Ahn SJ. Compositional differences in multi-species biofilms formed on various orthodontic adhesives. Eur J Orthod 2017;39:528-33. https://doi.org/10.1093/ejo/cjw089 
  18. Jeon DM, An JS, Lim BS, Ahn SJ. Orthodontic bonding procedures significantly influence biofilm composition. Prog Orthod 2020;21:14. https://doi.org/10.1186/s40510-020-00314-8 
  19. Park SH, Kim K, Cho S, Chung DH, Ahn SJ. Variation in adhesion of Streptococcus mutans and Porphyromonas gingivalis in saliva-derived biofilms on raw materials of orthodontic brackets. Korean J Orthod 2022;52:278-86. https://doi.org/10.4041/kjod21.283 
  20. Jung WS, Kim K, Cho S, Ahn SJ. Adhesion of periodontal pathogens to self-ligating orthodontic brackets: an in-vivo prospective study. Am J Orthod Dentofacial Orthop 2016;150:467-75. https://doi.org/10.1016/j.ajodo.2016.02.023 
  21. Kim K, Jung WS, Cho S, Ahn SJ. Changes in salivary periodontal pathogens after orthodontic treatment: an in vivo prospective study. Angle Orthod 2016;86:998-1003. https://doi.org/10.2319/070615-450.1 
  22. Ahn SJ, Kho HS, Kim KK, Nahm DS. Adhesion of oral streptococci to experimental bracket pellicles from glandular saliva. Am J Orthod Dentofacial Orthop 2003;124:198-205. https://doi.org/10.1016/s0889-5406(03)00346-9 
  23. Lee SJ, Kho HS, Lee SW, Yang WS. Experimental salivary pellicles on the surface of orthodontic materials. Am J Orthod Dentofacial Orthop 2001;119:59- 66. https://doi.org/10.1067/mod.2001.110583 
  24. Ahn SJ, Kho HS, Lee SW, Nahm DS. Roles of salivary proteins in the adherence of oral streptococci to various orthodontic brackets. J Dent Res 2002;81:411-5. https://doi.org/10.1177/154405910208100611 
  25. Ahn SJ, Ahn SJ, Wen ZT, Brady LJ, Burne RA. Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun 2008;76:4259-68. https://doi.org/10.1128/IAI.00422-08 
  26. Burne RA, Quivey RG Jr, Marquis RE. Physiologic homeostasis and stress responses in oral biofilms. Methods Enzymol 1999;310:441-60. https://doi.org/10.1016/s0076-6879(99)10035-1 
  27. ten Cate JM. Biofilms, a new approach to the microbiology of dental plaque. Odontology 2006;94:1-9. https://doi.org/10.1007/s10266-006-0063-3 
  28. Burne RA. Oral streptococci... products of their environment. J Dent Res 1998;77:445-52. https://doi.org/10.1177/00220345980770030301 
  29. Park JW, An JS, Lim WH, Lim BS, Ahn SJ. Microbial changes in biofilms on composite resins with different surface roughness: an in vitro study with a multispecies biofilm model. J Prosthet Dent 2019;122:493.e1-493.e8. https://doi.org/10.1016/j.prosdent.2019.08.009 
  30. Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 2018;26:229-42. https://doi.org/10.1016/j.tim.2017.09.008 
  31. Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021;86:32-56. https://doi.org/10.1111/prd.12361 
  32. Ahn SJ, Ahn SJ, Browngardt CM, Burne RA. Changes in biochemical and phenotypic properties of Streptococcus mutans during growth with aeration. Appl Environ Microbiol 2009;75:2517-27. https://doi.org/10.1128/AEM.02367-08 
  33. Yang IH, Lim BS, Park JR, Hyun JY, Ahn SJ. Effect of orthodontic bonding steps on the initial adhesion of mutans streptococci in the presence of saliva. Angle Orthod 2011;81:326-33. https://pubmed.ncbi.nlm.nih.gov/21208087/  https://doi.org/10.2319/062210-343.1
  34. O'Reilly MM, Featherstone JD. Demineralization and remineralization around orthodontic appliances: an in vivo study. Am J Orthod Dentofacial Orthop 1987;92:33-40. https://doi.org/10.1016/0889-5406(87)90293-9 
  35. Collys K, Cleymaet R, Coomans D, Slop D. Acid-etched enamel surfaces after 24 h exposure to calcifying media in vitro and in vivo. J Dent 1991;19:230-5. https://doi.org/10.1016/0300-5712(91)90124-h 
  36. Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002;23:1819-29. https://doi.org/10.1016/s0142-9612(01)00308-8 
  37. Polydorou O, Konig A, Hellwig E, Kummerer K. Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci 2009;117:68-75. https://doi.org/10.1111/j.1600-0722.2008.00594.x 
  38. Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res 2010;89:657-65. https://doi.org/10.1177/0022034510368644 
  39. Kim K, An JS, Lim BS, Ahn SJ. Effect of bisphenol A glycol methacrylate on virulent properties of Streptococcus mutans UA159. Caries Res 2019;53:84-95. https://doi.org/10.1159/000490197 
  40. Kim K, Kim JN, Lim BS, Ahn SJ. Urethane dimethacrylate influences the cariogenic properties of Streptococcus mutans. Materials (Basel) 2021;14:1015. https://doi.org/10.3390/ma14041015 
  41. Chung SH, Cho S, Kim K, Lim BS, Ahn SJ. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents. Angle Orthod 2017;87:307-12. https://doi.org/10.2319/052516-416.1 
  42. Ozel MB, Tuzuner T, Guplu ZA, Coleman NJ, Hurt AP, Buruk CK. The antibacterial activity and release of quaternary ammonium compounds in an orthodontic primer. Acta Odontol Latinoam 2017;30:141-8. https://pubmed.ncbi.nlm.nih.gov/29750238/ 
  43. Oz AZ, Oz AA, Yazicioglu S, Sancaktar O. Effectiveness of an antibacterial primer used with adhesive-coated brackets on enamel demineralization around brackets: an in vivo study. Prog Orthod 2019;20:15. https://doi.org/10.1186/s40510-019-0271-3 
  44. Faltermeier A, Burgers R, Rosentritt M. Bacterial adhesion of Streptococcus mutans to esthetic bracket materials. Am J Orthod Dentofacial Orthop 2008;133(4 Suppl):S99-103. https://doi.org/10.1016/j.ajodo.2007.03.024 
  45. Papaioannou W, Gizani S, Nassika M, Kontou E, Nakou M. Adhesion of Streptococcus mutans to different types of brackets. Angle Orthod 2007;77:1090-5. https://doi.org/10.2319/091706-375.1 
  46. Lim BS, Kim BH, Shon WJ, Ahn SJ. Effects of caries activity on compositions of mutans streptococci in saliva-induced biofilm formed on bracket materials. Materials (Basel) 2020;13:4764. https://doi.org/10.3390/ma13214764 
  47. Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S. Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur J Oral Sci 2012;120:458-65. https://doi.org/10.1111/j.1600-0722.2012.00983.x 
  48. Skilbeck MG, Mei L, Mohammed H, Cannon RD, Farella M. The effect of ligation methods on biofilm formation in patients undergoing multi-bracketed fixed orthodontic therapy - a systematic review. Orthod Craniofac Res 2022;25:14-30. https://doi.org/10.1111/ocr.12503 
  49. Gwinnett AJ, Ceen RF. Plaque distribution on bonded brackets: a scanning microscope study. Am J Orthod 1979;75:667-77. https://doi.org/10.1016/0002-9416(79)90098-8 
  50. Sukontapatipark W, el-Agroudi MA, Selliseth NJ, Thunold K, Selvig KA. Bacterial colonization associated with fixed orthodontic appliances. A scanning electron microscopy study. Eur J Orthod 2001;23:475-84. https://doi.org/10.1093/ejo/23.5.475 
  51. Carey CM. Focus on fluorides: update on the use of fluoride for the prevention of dental caries. J Evid Based Dent Pract 2014;14 Suppl:95-102. https://doi.org/10.1016/j.jebdp.2014.02.004 
  52. Griffin SO, Regnier E, Griffin PM, Huntley V. Effectiveness of fluoride in preventing caries in adults. J Dent Res 2007;86:410-5. https://doi.org/10.1177/154405910708600504 
  53. O'Mullane DM, Baez RJ, Jones S, Lennon MA, Petersen PE, Rugg-Gunn AJ, et al. Fluoride and Oral Health. Community Dent Health 2016;33:69-99. https://doi.org/10.1922/CDH_3707O'Mullane31 
  54. Ogaard B. Effects of fluoride on caries development and progression in vivo. J Dent Res 1990;69 Spec No:813-9; discussion 820-3. https://doi.org/10.1177/00220345900690S155 
  55. Ahn SJ, Lee SJ, Lee DY, Lim BS. Effects of different fluoride recharging protocols on fluoride ion release from various orthodontic adhesives. J Dent 2011;39:196-201. https://doi.org/10.1016/j.jdent.2010.12.003 
  56. Lim BS, Lee SJ, Lim YJ, Ahn SJ. Effects of periodic fluoride treatment on fluoride ion release from fresh orthodontic adhesives. J Dent 2011;39:788-94. https://doi.org/10.1016/j.jdent.2011.08.011 
  57. Fukazawa M, Matsuya S, Yamane M. The mechanism for erosion of glass-ionomer cements in organic-acid buffer solutions. J Dent Res 1990;69:1175-9. https://doi.org/10.1177/00220345900690051001 
  58. Dionysopoulos D. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: a systematic review. J Conserv Dent 2016;19:11-6. https://doi.org/10.4103/0972-0707.173185 
  59. Chen L, Suh BI, Yang J. Antibacterial dental restorative materials: a review. Am J Dent 2018;31(Sp Is B):6B-12B. https://pubmed.ncbi.nlm.nih.gov/31099206/  1099206
  60. Lim BS, Cheng Y, Lee SP, Ahn SJ. Chlorhexidine release from orthodontic adhesives after topical chlorhexidine treatment. Eur J Oral Sci 2013;121(3 Pt 1):211-7. https://doi.org/10.1111/eos.12033 
  61. Ryu HS, Kim YI, Lim BS, Lim YJ, Ahn SJ. Chlorhexidine uptake and release from modified titanium surfaces and its antimicrobial activity. J Periodontol 2015;86:1268-75. https://doi.org/10.1902/jop.2015.150075 
  62. Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009;25:206-13. https://doi.org/10.1016/j.dental.2008.06.002 
  63. Liu Y, Zhang L, Niu LN, Yu T, Xu HHK, Weir MD, et al. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J Dent 2018;72:53-63. https://doi.org/10.1016/j.jdent.2018.03.004 
  64. Degrazia FW, Altmann ASP, Ferreira CJ, Arthur RA, Leitune VCB, Samuel SMW, et al. Evaluation of an antibacterial orthodontic adhesive incorporated with niobium-based bioglass: an in situ study. Braz Oral Res 2019;33:e010. https://doi.org/10.1590/1807-3107bor-2019.vol33.0010