• Title/Summary/Keyword: Density-based Clustering

Search Result 167, Processing Time 0.022 seconds

Automatic Photograph Classification Using Geographical Information (지리정보를 이용한 자동사진분류)

  • Hong, Young-Jin;Kim, Seong-Woon;Yoo, Myung-Hyun;Lee, Yong-Beom;Kim, Sang-Ryong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.692-698
    • /
    • 2006
  • 점점 더 많은 디지털 카메라와 휴대폰이 고해상도 카메라가 장착되고 대용량의 저장공간이 제공되면서 사용자들의 사진촬영 빈도가 증대하고 있다. 조만간 휴대폰의 저장된 사진을 효과적으로 관리하고 브라우징할 수 있는 기술이 필요한 시기가 올 것이다. 본 논문은 휴대폰이나 디지털 카메라 혹은 카메라가 장착되어 사진을 찍을 수 있는 모든 형태의 휴대단말에서 촬영된 개인사진을 지리적 위치정보를 이용하여 자동으로 분류하는 시스템을 제시한다. 기존의 시간정보를 이용하여 촬영시간의 근접성을 이용해 순차적으로 자동 분류하는 시스템과는 달리 위치정보를 이용하여 촬영위치에 따라 비순차적으로 자동 분류한다. 촬영위치 근접성을 결정하기 위해 밀도기반 클러스터링 알고리즘을 사용하여 전체 사진을 대분류하고 기존의 자동사진 분류방식에서는 다루지 않았던 일상사진과 비일상사진을 분류하고, 대분류된 사진을 시간정보를 이용하여 소분류 함으로서 자동 사진분류 성능을 높이고자 한다.

  • PDF

Clustering Algorithm for Time Series with Similar Shapes

  • Ahn, Jungyu;Lee, Ju-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3112-3127
    • /
    • 2018
  • Since time series clustering is performed without prior information, it is used for exploratory data analysis. In particular, clusters of time series with similar shapes can be used in various fields, such as business, medicine, finance, and communications. However, existing time series clustering algorithms have a problem in that time series with different shapes are included in the clusters. The reason for such a problem is that the existing algorithms do not consider the limitations on the size of the generated clusters, and use a dimension reduction method in which the information loss is large. In this paper, we propose a method to alleviate the disadvantages of existing methods and to find a better quality of cluster containing similarly shaped time series. In the data preprocessing step, we normalize the time series using z-transformation. Then, we use piecewise aggregate approximation (PAA) to reduce the dimension of the time series. In the clustering step, we use density-based spatial clustering of applications with noise (DBSCAN) to create a precluster. We then use a modified K-means algorithm to refine the preclusters containing differently shaped time series into subclusters containing only similarly shaped time series. In our experiments, our method showed better results than the existing method.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

Vulnerability Evaluation by Road Link Based on Clustering Analysis for Disaster Situation (재난·재해 상황을 대비한 클러스터링 분석 기반의 도로링크별 취약성 평가 연구)

  • Jihoon Tak;Jungyeol Hong;Dongjoo Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.29-43
    • /
    • 2023
  • It is necessary to grasp the characteristics of traffic flow passing through a specific road section and the topological structure of the road in advance in order to quickly prepare a movement management strategy in the event of a disaster or disaster. It is because it can be an essential basis for road managers to assess vulnerabilities by microscopic road units and then establish appropriate monitoring and management measures for disasters or disaster situations. Therefore, this study presented spatial density, time occupancy, and betweenness centrality index to evaluate vulnerabilities by road link in the city department and defined spatial-temporal and topological vulnerabilities by clustering analysis based on distance and density. From the results of this study, road administrators can manage vulnerabilities by characterizing each road link group. It is expected to be used as primary data for selecting priority control points and presenting optimal routes in the event of a disaster or disaster.

Stochastic Modeling of Plug-in Electric Vehicle Distribution in Power Systems

  • Son, Hyeok Jin;Kook, Kyung Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1276-1282
    • /
    • 2013
  • This paper proposes a stochastic modeling of plug-in electric vehicles (PEVs) distribution in power systems, and analyzes the corresponding clustering characteristic. It is essential for power utilities to estimate the PEV charging demand as the penetration level of PEV is expected to increase rapidly in the near future. Although the distribution of PEVs in power systems is the primary factor for estimating the PEV charging demand, the data currently available are statistics related to fuel-driven vehicles and to existing electric demands in power systems. In this paper, we calculate the number of households using electricity at individual ending buses of a power system based on the electric demands. Then, we estimate the number of PEVs per household using the probability density function of PEVs derived from the given statistics about fuel-driven vehicles. Finally, we present the clustering characteristic of the PEV distribution via case studies employing the test systems.

A Study on the Applicability of Safety Performance Indicators using the Density-Based Ship Domain (밀도기반 선박 도메인을 이용한 안전 성능 지표 활용성 연구)

  • Yeong-Jae Han;Sunghyun Sim;Hyerim Bae
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.89-97
    • /
    • 2022
  • Various efforts are needed to prevent accidents because ship collisions can cause various negative situations such as economic losses and casualties. Therefore, research to prevent accidents is being actively conducted, and in this study, new leading indicators for preventing ship collision accidents is proposed. In previous studies, the risk of collision was expressed in consideration of the distance between ships in a specific sea area, but there is a disadvantage that a new model needs to be developed to apply this to other sea areas. In this study, the density-based ship domain DESD (Density-based Empirical Ship Domain) including the environment and operating characteristics of the sea area was defined using AIS (Automatic Identification System) data, which is ship operation information. Deep clustering is applied to two-dimensional DESDs created for each sea area to cluster the seas with similar operating environments. Through the analysis of the relationship between clustered sea areas and ship collision accidents, it was statistically tested that the occurrence of accidents varies by characteristic of each sea area, and it was proved that DESD can be used as a leading indicator of accidents.

An Optimization Method for the Calculation of SCADA Main Grid's Theoretical Line Loss Based on DBSCAN

  • Cao, Hongyi;Ren, Qiaomu;Zou, Xiuguo;Zhang, Shuaitang;Qian, Yan
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1156-1170
    • /
    • 2019
  • In recent years, the problem of data drifted of the smart grid due to manual operation has been widely studied by researchers in the related domain areas. It has become an important research topic to effectively and reliably find the reasonable data needed in the Supervisory Control and Data Acquisition (SCADA) system has become an important research topic. This paper analyzes the data composition of the smart grid, and explains the power model in two smart grid applications, followed by an analysis on the application of each parameter in density-based spatial clustering of applications with noise (DBSCAN) algorithm. Then a comparison is carried out for the processing effects of the boxplot method, probability weight analysis method and DBSCAN clustering algorithm on the big data driven power grid. According to the comparison results, the performance of the DBSCAN algorithm outperforming other methods in processing effect. The experimental verification shows that the DBSCAN clustering algorithm can effectively screen the power grid data, thereby significantly improving the accuracy and reliability of the calculation result of the main grid's theoretical line loss.

Clustering Algorithm for Extending Lifetime of Wireless Sensor Networks (무선 센서 네트워크의 수명연장을 위한 클러스터링 알고리즘)

  • Kim, Sun-Chol;Choi, Seung-Kwon;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.77-85
    • /
    • 2015
  • Recently, wireless sensor network(WSN) have been used in various fields to implement ubiquitous computing environment. WSN uses small, low cost and low power sensors in order to collect information from the sensor field. This paper proposes a clustering algorithm for energy efficiency of sensor nodes. The proposed algorithm is based on conventional LEACH, the representative clustering protocol for WSN and it prolongs network and nodes life time using sleep technique and changable transmission mode. The nodes of the proposed algorithm first calculate their clustering participation value based on the distance to the neighbor nodes. The nodes located in high density area will have clustering participation value and it can turn to sleep mode. Besides, proposed algorithm can change transmission method from conventional single-hop transmission to multi-hop transmission according to the energy level of cluster head. Simulation results show that the proposed clustering algorithm outperforms conventional LEACH, especially non-uniformly deployed network.

Stochastic Strength Analysis according to Initial Void Defects in Composite Materials (복합재 초기 공극 결함에 따른 횡하중 강도 확률론적 분석)

  • Seung-Min Ji;Sung-Wook Cho;S.S. Cheon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.179-185
    • /
    • 2024
  • This study quantitatively evaluated and investigated the changes in transverse tensile strength of unidirectional fiber-reinforced composites with initial void defects using a Representative Volume Element (RVE) model. After calculating the appropriate sample size based on margin of error and confidence level for initial void defects, a sample group of 5000 RVE models with initial void defects was generated. Dimensional reduction and density-based clustering analysis were conducted on the sample group to assess similarity, confirming and verifying that the sample group was unbiased. The validated sample analysis results were represented using a Weibull distribution, allowing them to be applied to the reliability analysis of composite structures.

Improving Web Service Recommendation using Clustering with K-NN and SVD Algorithms

  • Weerasinghe, Amith M.;Rupasingha, Rupasingha A.H.M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1708-1727
    • /
    • 2021
  • In the advent of the twenty-first century, human beings began to closely interact with technology. Today, technology is developing, and as a result, the world wide web (www) has a very important place on the Internet and the significant task is fulfilled by Web services. A lot of Web services are available on the Internet and, therefore, it is difficult to find matching Web services among the available Web services. The recommendation systems can help in fixing this problem. In this paper, our observation was based on the recommended method such as the collaborative filtering (CF) technique which faces some failure from the data sparsity and the cold-start problems. To overcome these problems, we first applied an ontology-based clustering and then the k-nearest neighbor (KNN) algorithm for each separate cluster group that effectively increased the data density using the past user interests. Then, user ratings were predicted based on the model-based approach, such as singular value decomposition (SVD) and the predictions used for the recommendation. The evaluation results showed that our proposed approach has a less prediction error rate with high accuracy after analyzing the existing recommendation methods.