• Title/Summary/Keyword: Density-Based Clustering

Search Result 166, Processing Time 0.022 seconds

Guassian pdfs Clustering Using a Divergence Measure-based Neural Network (발산거리 기반의 신경망에 의한 가우시안 확률 밀도 함수의 군집화)

  • 박동철;권오현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.627-631
    • /
    • 2004
  • An efficient algorithm for clustering of GPDFs(Gaussian Probability Density Functions) in a speech recognition model is proposed in this paper. The proposed algorithm is based on CNN with the divergence as its distance measure and is applied to a speech recognition. The algorithm is compared with conventional Dk-means(Divergence-based k-means) algorithm in CDHMM(Continuous Density Hidden Markov Model). The results show that it can reduce about 31.3% of GPDFs over Dk-means algorithm without suffering any recognition performance. When compared with the case that no clustering is employed and full GPDFs are used, the proposed algorithm can save about 61.8% of GPDFs while preserving the recognition performance.

Density Aware Energy Efficient Clustering Protocol for Normally Distributed Sensor Networks

  • Su, Xin;Choi, Dong-Min;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.911-923
    • /
    • 2010
  • In wireless sensor networks (WSNs), cluster based data routing protocols have the advantages of reducing energy consumption and link maintenance cost. Unfortunately, most of clustering protocols have been designed for uniformly distributed sensor networks. However, some urgent situations do not allow thousands of sensor nodes being deployed uniformly. For example, air vehicles or balloons may take the responsibility for deploying sensor nodes hence leading a normally distributed topology. In order to improve energy efficiency in such sensor networks, in this paper, we propose a new cluster formation algorithm named DAEEC (Density Aware Energy-Efficient Clustering). In this algorithm, we define two kinds of clusters: Low Density (LD) clusters and High Density (HD) clusters. They are determined by the number of nodes participated in one cluster. During the data routing period, the HD clusters help the neighbor LD clusters to forward the sensed data to the central base station. Thus, DAEEC can distribute the energy dissipation evenly among all sensor nodes by considering the deployment density to improve network lifetime and average energy savings. Moreover, because the HD clusters are densely deployed they can work in a manner of our former algorithm EEVAR (Energy Efficient Variable Area Routing Protocol) to save energy. According to the performance analysis result, DAEEC outperforms the conventional data routing schemes in terms of energy consumption and network lifetime.

Fuzzy Logic Approach to Zone-Based Stable Cluster Head Election Protocol-Enhanced for Wireless Sensor Networks

  • Mary, S.A. Sahaaya Arul;Gnanadurai, Jasmine Beulah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1692-1711
    • /
    • 2016
  • Energy is a scarce resource in wireless sensor networks (WSNs). A variety of clustering protocols for WSNs, such as the zone-based stable election protocol-enhanced (ZSEP-E), have been developed for energy optimization. The ZSEP-E is a heterogeneous zone-based clustering protocol that focuses on unbalanced energy consumption with parallel formation of clusters in zones and election of cluster heads (CHs). Most ZSEP-E research has assumed probabilistic election of CHs in the zones by considering the maximum residual energy of nodes. However, studies of the diverse CH election parameters are lacking. We investigated the performance of the ZSEP-E in such scenarios using a fuzzy logic approach based on three descriptors, i.e., energy, density, and the distance from the node to the base station. We proposed an efficient ZSEP-E scheme to adapt and elect CHs in zones using fuzzy variables and evaluated its performance for different energy levels in the zones.

A clutter reduction algorithm based on clustering for active sonar systems (능동소나 시스템을 위한 군집화 기반의 클러터 제거 기법)

  • Kwak, ChulHyun;Cheong, Myoung Jun;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.149-157
    • /
    • 2016
  • In this paper, we propose a new clutter reduction algorithm, which rejects heavy clutter density in shallow water environments, based on a clustering method. At first, it applies the density-based clustering to active sonar measurements by considering speed of targets, pulse repetition intervals, etc. We assume clustered measurements as target candidates and remove noise, which is a set of unclustered measurements. After clustering, we classify target and clutter measurements by the validation check method. We evaluate the performance of the proposed algorithm on synthetic data and sea-trial data. The results demonstrate that the proposed algorithm provides significantly better performances to reduce clutter than the conventional algorithm.

Top-down Hierarchical Clustering using Multidimensional Indexes (다차원 색인을 이용한 하향식 계층 클러스터링)

  • Hwang, Jae-Jun;Mun, Yang-Se;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.367-380
    • /
    • 2002
  • Due to recent increase in applications requiring huge amount of data such as spatial data analysis and image analysis, clustering on large databases has been actively studied. In a hierarchical clustering method, a tree representing hierarchical decomposition of the database is first created, and then, used for efficient clustering. Existing hierarchical clustering methods mainly adopted the bottom-up approach, which creates a tree from the bottom to the topmost level of the hierarchy. These bottom-up methods require at least one scan over the entire database in order to build the tree and need to search most nodes of the tree since the clustering algorithm starts from the leaf level. In this paper, we propose a novel top-down hierarchical clustering method that uses multidimensional indexes that are already maintained in most database applications. Generally, multidimensional indexes have the clustering property storing similar objects in the same (or adjacent) data pares. Using this property we can find adjacent objects without calculating distances among them. We first formally define the cluster based on the density of objects. For the definition, we propose the concept of the region contrast partition based on the density of the region. To speed up the clustering algorithm, we use the branch-and-bound algorithm. We propose the bounds and formally prove their correctness. Experimental results show that the proposed method is at least as effective in quality of clustering as BIRCH, a bottom-up hierarchical clustering method, while reducing the number of page accesses by up to 26~187 times depending on the size of the database. As a result, we believe that the proposed method significantly improves the clustering performance in large databases and is practically usable in various database applications.

An Efficient Clustering Scheme Considering Node Density in Wireless Sensor Networks (무선 센서 네트워크에서 노드 밀도를 고려한 효율적인 클러스터링 기법)

  • Kim, Chang-Hyeon;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.79-86
    • /
    • 2009
  • In this paper, we propose a new clustering scheme that provides optimal data aggregation effect and reduces energy consumption of nodes by considering the density of nodes when forming clusters. Since the size of the cluster is determined to ensure optimal data aggregation rate, our scheme reduces transmission range and minimizes interference between clusters. Moreover, by clustering using locally adjacent nodes and aggregating data received from cluster members, we reduce energy consumption of nodes. Through simulation, we confirmed that energy consumption of the whole network is minimized and the sensor network life-time is extended. Moreover, we show that the proposed clustering scheme improves the performance of network compared to previous LEACH clustering scheme.

A novel reconstruction algorithm based on density clustering for cosmic-ray muon scattering inspection

  • Hou, Linjun;Zhang, Quanhu;Yang, Jianqing;Cai, Xingfu;Yao, Qingxu;Huo, Yonggang;Chen, Qifan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2348-2356
    • /
    • 2021
  • As a relatively new radiation imaging method, the cosmic-ray muon scattering imaging technology can be used to prevent nuclear smuggling and is of considerable significance to nuclear safety. Proposed in this paper is a new reconstruction algorithm based on density clustering, aiming to improve inspection quality with better performance. Firstly, this new algorithm is introduced in detail. Then in order to eliminate the inequity of the density threshold caused by the heterogeneity of the muon flux in different positions, a new flux correction method is proposed. Finally, three groups of simulation experiments are carried out with the help of Geant4 toolkit to optimize the algorithm parameters, verify the correction method and test the inspection quality under shielded condition, and compare this algorithm with another common inspection algorithm under different conditions. The results show that this algorithm can effectively identify and locate nuclear material with low misjudging and missing rates even when there is shielding and momentum precision is low, and the threshold correcting method is universally effective for density clustering algorithms.

A Density Estimation based Fuzzy C-means Algorithm for Image Segmentation (영상분할을 위한 밀도추정 바탕의 Fuzzy C-means 알고리즘)

  • Ko, Jeong-Won;Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.196-201
    • /
    • 2007
  • The Fuzzy E-means (FCM) algorithm is a widely used clustering method that incorporates probabilitic memberships. Due to these memberships, it can be sensitive to noise data. In this paper, we propose a new fuzzy C-means clustering algorithm by incorporating the Parzen Window method to include density information of the data. Several experimental results show that our proposed density-based FCM algorithm outperforms conventional FCM especially for data with noise and it is not sensitive to initial cluster centers.

Approximate Fuzzy Clustering Based on Density Functions (밀도함수를 이용한 근사적 퍼지 클러스처링)

  • 권석호;손세호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.285-292
    • /
    • 2000
  • In general, exploratory data analysis consists of three processes: i) assessment of clustering tendency, ii) cluster analysis, and iii) cluster validation. This analysis method requiring a number of iterations of step ii) and iii) to converge is computationally inefficient. In this paper, we propose a density function-based approximate fuzzy clustering method with a hierachical structure which consosts of two phases: Phase I is a features(i.e., number of clusters and cluster centers) extraction process based on the tendency assessment of a given data and Phase II is a standard FCM with the cluster centers intialized by the results of the Phase I. Numerical examples are presented to show the validity of the proposed clustering method.

  • PDF

Course Variance Clustering for Traffic Route Waypoint Extraction

  • Onyango Shem Otoi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.277-279
    • /
    • 2022
  • Rapid Development and adoption of AIS as a survailance tool has resulted in widespread application of data analysis technology, in addition to AIS ship trajectory clustering. AIS data-based clustering has become an increasingly popular method for marine traffic pattern recognition, ship route prediction and anomaly detection in recent year. In this paper we propose a route waypoint extraction by clustering ships CoG variance trajectory using Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm in both port approach channel and coastal waters. The algorithm discovers route waypoint effectively. The result of the study could be used in traffic route extraction, and more-so develop a maritime anomaly detection tool.

  • PDF