• Title/Summary/Keyword: Density of states

Search Result 553, Processing Time 0.029 seconds

Effect of Sputtering Power on the Change of Total Interfacial Trap States of SiZnSnO Thin Film Transistor

  • Ko, Kyung-Min;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.328-332
    • /
    • 2014
  • Thin film transistors (TFTs) with an amorphous silicon zinc tin oxide (a-2SZTO) channel layer have been fabricated using an RF magnetron sputtering system. The effect of the change of excitation electron on the variation of the total interfacial trap states of a-2SZTO systems was investigated depending on sputtering power, since the interfacial state could be changed by changing sputtering power. It is well known that Si can effectively reduce the generation of the oxygen vacancies. However, The a-2SZTO systems of ZTO doped with 2 wt% Si could be degraded because the Si peripheral electron belonging to a p-orbital affects the amorphous zinc tin oxide (a-ZTO) TFTs of the s-orbital overlap structure. We fabricated amorphous 2 wt% Si-doped ZnSnO (a-2SZTO) TFTs using an RF magnetron sputtering system. The a-2SZTO TFTs show an improvement of the electrical property with increasing power. The a-2SZTO TFTs fabricated at a power of 30 W showed many of the total interfacial trap states. The a-2SZTO TFTs at a power of 30 W showed poor electrical property. However, at 50 W power, the total interfacial trap states showed improvement. In addition, the improved total interfacial states affected the thermal stress of a-2SZTO TFTs. Therefore, a-2SZTO TFTs fabricated at 50 W power showed a relatively small shift of threshold voltage. Similarly, the activation energy of a-2SZTO TFTs fabricated at 50 W power exhibits a relatively large falling rate (0.0475 eV/V) with a relatively high activation energy, which means that the a-2SZTO TFTs fabricated at 50 W power has a relatively lower trap density than other power cases. As a result, the electrical characteristics of a-2SZTO TFTs fabricated at a sputtering power of 50 W are enhanced. The TFTs fabricated by rf sputter should be carefully optimized to provide better stability for a-2SZTO in terms of the sputtering power, which is closely related to the interfacial trap states.

Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties

  • Chuan, M.W.;Wong, K.L.;Hamzah, A.;Rusli, S.;Alias, N.E.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Silicene is a two-dimensional (2D) derivative of silicon (Si) arranged in honeycomb lattice. It is predicted to be compatible with the present fabrication technology. However, its gapless properties (neglecting the spin-orbiting effect) hinders its application as digital switching devices. Thus, a suitable band gap engineering technique is required. In the present work, the band structure and density of states of uniformly doped silicene are obtained using the nearest neighbour tight-binding (NNTB) model. The results show that uniform substitutional doping using aluminium (Al) has successfully induced band gap in silicene. The band structures of the presented model are in good agreement with published results in terms of the valence band and conduction band. The band gap values extracted from the presented models are 0.39 eV and 0.78 eV for uniformly doped silicene with Al at the doping concentration of 12.5% and 25% respectively. The results show that the engineered band gap values are within the range for electronic switching applications. The conclusions of this study envisage that the uniformly doped silicene with Al can be further explored and applied in the future nanoelectronic devices.

Transient trap density in thin silicon oxides

  • Kang, C.S.;Kim, D.J.;Byun, M.G.;Kim, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.412-417
    • /
    • 2000
  • High electric field stressed trap distributions were investigated in the thin silicon oxide of polycrystalline silicon gate metal oxide semiconductor capacitors. The transient currents associated with the off time of stressed voltage were used to measure the density and distribution of high voltage stress induced traps. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform near both cathode and anode interface in polycrystalline silicon gate metal oxide semiconductor devices. The stress generated trap distributions were relatively uniform the order of $10^{11}$~$10^{12}$ [states/eV/$\textrm{cm}^2$] after a stress. The trap densities at the oxide silicon interface after high stress voltages were in the $10^{10}$~$10^{13}$ [states/eV/$\textrm{cm}^2$]. It was appeared that the transient current that flowed when the stress voltages were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF

Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: A Computational Study (Fe(110) 표면의 피리딘 옥심 결합 메커니즘 및 전자 구조 해명: 전산 연구)

  • Hassane, Lgaz;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.255-256
    • /
    • 2023
  • The development of corrosion inhibitors with outstanding performance is a never-ending and complex process engaged in by researchers, engineers and practitioners. Computational assessment of organic corrosion inhibitors performance is a crucial step towards the design of new task-pecific materials. Herein, electronic features, adsorption characteristics and bonding mechanisms of two pyridine oximes, namely 2-pyridylaldoxime (2POH) and 3-pyridylaldoxime (3POH) with the iron surface were investigated using molecular dynamics (MD), and self-consistent-charge density-unctional tight-binding (SCC-DFTB) simulations. SCC-DFTB simulations revealed that 3POH molecule can form covalent bonds with iron atoms in its neutral and protonated states, while 2POH molecule can only bond with iron through its protonated form, resulting in interaction energies of -2.534, -2.007, -1.897, and -0.007 eV for 3POH, 3POH+, 2POH+, and 2POH, respectively. Projected density of states (PDOSs) analysis of pyridines-Fe(110) interactions indicated that pyridine molecules chemically adsorbed on the iron surface.

  • PDF

A Study on Geotechnical Properties of Deep-sea Sediments in Clarion-Clipperton Fracture Zone of NE Pacific (북동태평양 클라리온-클리퍼톤 지역 심해저 표층 퇴적물의 지질공학적 특성 연구)

  • Chi, Sang-Bum;Oh, Jae-Kyung;Lee, Hyun-Bok;Kim, Ki-Hyun
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.133-145
    • /
    • 2003
  • Deep-sea surface sediments were collected using a multiple corer at 20 stations of Clarion-Clipperton fracture zone in the northeast equatorial Pacific to understand latitudinal and longitudinal variations of geotechnical properties. There was a distinct latitudinal variation of geotechnical properties in the study area. The northern sediments showed finer grain size, lower water content and porosity, higher bulk density and specific grain density, lower liquid limits and plastic limits than their southern counterparts. The northern sediments are classified into inorganic clays of low plasticity (fat clays) on plasticity charts and normal to active clay on activity chart, whereas, the southern sediments are classified into fine-grained, highly-plastic, inorganic and biogenic silt or organic clays on plasticity chart and normal to very active clay on activity chart. When shear strength are considered, the northern sediments were found to be in unconsolidated states, while the southern ones to be normal to over-consolidated states. These latitudinal variations in sediment characteristics are likely caused by differences in productivity of surface water that controls sediment compositions, sedimentation rates, and grain solubility.

The Effect of Surface Recombination Current on the Saturation Current in Si Solar Cell (Si 태양전지(太陽電池)의 표면재결합(表面再結合) 전류(電流)가 포화전류(飽和電流)에 미치는 영향(影響))

  • Shin, Kee-Shik;Lee, Ki-Seon;Choi, Byung-Ho
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.12-18
    • /
    • 1988
  • The effect of surface recombination current density on the saturation current density in Si solar cell has been studied. Theoretical model for surface recombination current was set up from emitter transparent model of M.A. Shibib, and saturation current of Si solar cell made by ion implantation method was also measured by digital electrometer. The theoretical surface recombination current density which is the same as saturation surface recombination current density in Shibib model was $10^{-11}[A/cm^2]$ and the measured value was ranged from $8{\times}10^{-10}$ to $2{\times}10^{-9}[A/cm^2]$. Comparing with the ideal p-n junction of Shockley, transparent emitter model shows improved result by $10^2$ order of saturation current density. But there still exists $10^2$ order of difference of saturation current density between theoretical and actual values, which are assumed to be caused by 1) leakage current through solar cell edge, 2) recombination of carriers in the depletion layer, 3) the series resistance effect and 4) the tunneling of carriers between states in the band gap.

  • PDF

XPS Study of Mn 2pp and 3s Satellite Structures of Heusler Alloys: NiMnSb, ppdMnSb, pptMnSb

  • Yang, See-Hun;Oh, Se-Jung;ppark, Je-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1994.02a
    • /
    • pp.50-50
    • /
    • 1994
  • Half-metallic Heusler alloys (NiMnSb, ppdMnSb, pptMnSb) have attracted much attention due to their unique electronic and magnetic structures. Sppin-ppolarized band structure calculation ppredicts metallic behavior for the majority sppin states and semiconductor behavior for the minority sppin states. We have studied the electronic structures of these half-metallic Heusler alloys by core-level pphotoemission sppectroscoppy of Mn 2pp and 3s XppS sppectra. We found large intensities of Mn 2pp satellites and 3s exchange spplitting comppared with other metal Mn-alloys. These satellite structure can be understood by applying Anderson imppurity model. This fact supports the calculated sppin pprojected ppartial density of states which suggests that the valence electrons be highly sppin ppolarized near Fermi level and that the electrons involved with charge-transfer be mainly minority sppin ones which have semiconducting band structure. The trend of charge transfer energies Δ from ligands (Sb 5pp) to Mn 3d, obtained from our model fitting, is consistent with that calculated from sppin pprojected ppartial density of state. Also the trend of d-d electron correlation energies U calculated from Mn Auger line L3 VV by Mg $K\alpha$ source is comppatible with that resulted from our model fitting. We fitted the Mn 3s curve in the same way as for insulating Mn comppounds by using the same pparameters calculated from Mn 2pp curve fitting exceppt for the Coulomb interaction energy Q between core hole and d-electrons. The 3s sppectra were analyzed by combing the charge transfer model and a simpple model taking into account the configuration mixing effect due to the intra-shell correlation. We found that the exchange interaction between 3s hole and 3d electrons is mainly respponsible for the satellite of Mn 3s sppectra. This is consistent with the neutron scattering data, which suggests local 3d magnetic moment. We find that the XppS analysis results of Mn 2pp and 3s satellite structures of half-metallic Heusler alloys are very similar to those of insulating transition metal comppounds.

  • PDF

Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2 (MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과)

  • 이동윤;김봉서;송재성;김양수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.

Electronic Structures and Magnetism of MgCCo3(001) (MgCCo3(001)표면의 전자구조와 자성)

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.94-98
    • /
    • 2004
  • The electronic structures and magnetism of MgCCo$_3$(001) surface terminated by the plane with the MgCo-Term (Mg, Co terminated) and the CCo-Term (C, Co terminated) were investigated using the all-electron full-potential linearized augmented Plane-wave method. For the MgCo-Term, the magnetic moment of Co atom of the surface is strongly enhanced to 1.00$\mu$$_{B}$, while the magnetic moment of Co atom of the subsurface is similar to that of the center layers. For the CCo-Term, the magnetic moments of Co atoms are enhanced to 0.75 and 0.80$\mu$$_{B}$ for the surface and subsurface layers, respectively. The magnetic moments of C and Mg atoms are coupled antiferromagnetically to that of the neighbour Co atoms. From the calculated density of states, we see that the enhancements of magnetic moments of Co atoms are closely related to localization of the Co-3d states.

Non-linear Resistive Switching Characteristic of ZnSe Selector Based HfO2 ReRAM Device for Eliminating Sneak Current

  • Kim, Jong-Gi;Kim, Yeong-Jae;Mok, In-Su;Lee, Gyu-Min;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.357-358
    • /
    • 2013
  • The non-linear characteristics of ON states are important for the application to the high density cross-point memory industry because the sneak current in neighbor cells occurred during reading, erasing, and writing process. Kw of above 20 in ON states, which is the writing current @ Vwrite/the current @ 1/2Vwrite, was required in cross-point ReRAM memory industry. The high current density non-linear IV curve of ZnSe selector was shown and the ALD HfO2 switching device has the linear properties of ON states and the compliance current of 100 uA. To evaluate the performance of the selection device, we connected itto HfO2 switching device in series. The bottom electrode of the selection device was connected to the top electrode of the RRAM. All of the bias was applied with respect to the top electrode of the selection device, whereas the bottom electrode of the RRAM was grounded. In the cross-point application, 1/2Vwrite and -1/2Vwrite were applied to the word-line and bit-line, respectively, which were connected to the selected cell, and a zero bias was applied to the unselected word-lines and bit-lines. The current @ 1/2Vwrite of the unselected cells was blocked by the selection device, thus eliminating the sneak path and obtaining a writing voltage margin. Using this method, the writing voltage margin was analyzed on the basis of the memory size.

  • PDF