• Title/Summary/Keyword: Density interface

Search Result 964, Processing Time 0.032 seconds

Bi-materials of Al-Mg Alloy Reinforced with/without SiC and Al2O3 Particles; Processing and Mechanical Properties

  • Chang, Si-Young;Cho, Han-Gyoung;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.354-361
    • /
    • 2007
  • The bi-materials with Al-Mg alloy and its composites reinforced with SiC and $Al_2O_3$ particles were prepared by conventional powder metallurgy method. The A1-5 wt%Mg and composite mixtures were compacted under $150{\sim}450\;MPa$, and then the mixtures compacted under 400 MPa were sintered at $773{\sim}1173K$ for 5h. The obtained bi-materials with Al-Mg/SiCp composite showed the higher relative density than those with $Al-Mg/Al_2O_3$ composite after compaction and sintering. Based on the results, the bi-materials compacted under 400 MPa and sintered at 873K for 5h were used for mechanical tests. In the composite side of bi-materials, the SiC particles were densely distributed compared to the $Al_2O_3$ particles. The bi-materials with Al-Mg/SiC composite showed the higher micro-hardness than those with $Al-Mg/Al_2O_3$ composite. The mechanical properties were evaluated by the compressive test. The bi-materials revealed almost the same value of 0.2% proof stress with Al-Mg alloy. Their compressive strength was lower than that of Al-Mg alloy. Moreover, impact absorbed energy of bi-materials was smaller than that of composite. However, the bi-materials with Al-Mg/SiCp composite particularly showed almost similar impact absorbed energy to $Al-Mg/Al_2O_3$ composite. From the observation of microstructure, it was deduced that the bi-materials was preferentially fractured through micro-interface between matrix and composite in the vicinity of macro-interface.

Surface Characteristics of Dental Implant Fixture with Various Manufacturing Process (치과 임플란트 고정체의 여러 가지 제조공정과정에 따른 표면특성)

  • Jeong, Yong-Hoon;Moon, Young-Pil;Lee, Chung-Hwan;Yu, Jin-Woo;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • In this study, surface characteristics of dental implant fixture with various manufacturing process have been researched using electrochemical methods. The dental implant fixture was selected with 5 steps by cleaning, surface treatment and sterilization with same size and screw structure; the 1st step-machined surface, 2nd step-cleaned by thinner and prosol solution, 3th step-surface treated by RBM (resorbable blasting media) method, 4th step-cleaned and dried, 5th step-sterilized by gamma-ray. The electrochemical behavior of dental implant fixture has been evaluated by using potentiostat (EG&G Co, 2273A) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion surface was observed using field-emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The step 5 sample showed the cleaner and rougher surface than step 3 sample. The step 5 sample of implant fixture treated by RBM and gamma sterilization showed the low corrosion current density compared to others. Especially, the step 3 sample of implant fixture treated by RBM was presented the lowest value of corrosion resistance and the highest value of corrosion current density. The step 3 sample showed the low value of polarization resistance compared to other samples. In conclusion, the implant fixture treated with RBM and gamma sterilization has the higher corrosion resistance, and corrosion resistance depends on the step of manufacturing process.

Eelctrical and Structural Properties of $CaF_2$Films ($CaF_2$ 박막의 전기적, 구조적 특성)

  • 김도영;최석원;이준신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1122-1127
    • /
    • 1998
  • Group II-AF_2$films such as $CaF_2$, $SrF_2$, and $BaF_2$ have been commonly used many practical applications such as silicon on insulatro(SOI), three-dimensional integrated circuits, buffer layers, and gate dielectrics in filed effect transistor. This paper presents electrical and structural properties of fluoride films as a gate dielectric layer. Conventional gate dielectric materials of TFTs like oxide group exhibited problems on high interface trap charge density($D_it$), and interface state incorporation with O-H bond created by mobile hydrogen and oxygen atoms. To overcome such problems in conventional gate insulators, we have investigated $CaF_2$ films on Si substrates. Fluoride films were deposited using a high vacuum evaporation method on the Si and glass substrate. $CaF_2$ films were preferentially grown in (200) plane direction at room temperature. We were able to achieve a minimum lattice mismatch of 0.74% between Si and $CaF_2$ films. Average roughness of $CaF_2$ films was decreased from 54.1 ${\AA}$ to 8.40 ${\AA}$ as temperature increased form RT and $300^{\circ}C$. Well fabricated MIM device showed breakdown electric field of 1.27 MV/cm and low leakage current of $10^{-10}$ A/$cm^2$. Interface trap charge density between $CaF_2$ film and Si substrate was as low as $1.8{\times}10^{11}cm^{-2}eV^{-1}$.

  • PDF

Development of Long-Term Storage Technology for Chinese Cabbage - Physiological Characteristics of Postharvest Freshness in a Cooler with a Monitoring and Control Interface

  • Lim, Ki Taek;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.194-204
    • /
    • 2014
  • Purpose: The aim of this study was to develop long-term storage technology for Chinese cabbage in order to extend the period of availability of freshly harvested products. The scope of the paper deals with the use of a cooler with a remote monitoring and control interface in conjunction with use of packaging film. Methods: A cooler with a real time monitoring system was designed as a low-temperature storage facility to control temperature and relative humidity (RH). The effects of storage in high-density polyethylene (HDPE) plastic boxes, 3% chitosan dipping solution, polypropylene film (PEF) with perforations, and mesh packaging bags on physiological responses were investigated. The optimal storage temperature and humidity for 120 days were below $0.5^{\circ}C$ and 90%, respectively. Physiological and biochemical features of cabbage quality were also analyzed: weight loss, texture, and sugar salinity, chlorophyll, reducing sugar, and vitamin C contents. Results: The cooler with a remote monitoring and control interface could be operated by an HMI program. A $0.5^{\circ}C$ temperature and 90% humidity could be remotely controlled within the cooler for 120 days. Postharvest freshness of Chinese cabbages could be maintained up to 120 days depending on the packaging method and operation of the remote monitoring system. In particular, wrapping the cabbages in PEF with perforations resulted in a less than a 5% deterioration in quality. This study provides evidence for efficient performance of plastic films in minimizing post-harvest deterioration and maintaining overall quality of cabbages stored under precise low-temperature conditions with remote monitoring and a control interface. Conclusions: Packaging with a modified plastic film and storage in a precisely controlled cooler with a remote monitoring and control interface could slow down the physiological factors that cause adverse quality changes and thereby increase the shelf life of Chinese cabbage.

Behavior of Oil-Water Interface between Tandem Fences (이중 유벽 사이의 기름과 물의 계면의 거동)

  • Kang Kwan Hyoung;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • The disturbance of oil-water interface confined between tandem fences caused by a sequence of traveling vortices below the interface is investigated. The traveling vortices are assumed to be those detached from the tip of the fore fence. The potential flow is assumed and the density interface is replaced as a sheet of vortex. The shape of the interface is predicted by tracing a finite number of marker particles placed at the interface. The velocity of the marker particles is determined by the Biot-Savart integral along the vortex sheet plus the contribution from the traveling point vortices. The rate of change of vortex-sheet strength is predicted by using an evolution equation for vorticity. The calculated results obtained for various conditions demonstrate that the large amplitude of interfacial wave following the moving vortek can be generated by the vortices.

  • PDF

Analysis of the Interface Trap Effect on Electrical Characteristic and Reliability of SANOS Memory Cell Transistor (SANOS 메모리 셀 트랜지스터에서 Tunnel Oxide-Si Substrate 계면 트랩에 따른 소자의 전기적 특성 및 신뢰성 분석)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Ki;Om, Jae-Chul;Lee, Seaung-Suk;Bae, Gi-Hyun;Lee, Hi-Deok;Lee, Ga-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.94-95
    • /
    • 2007
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program speed, reliability of memory device on interface trap between Si substrate and tunneling oxide was investigated. The devices were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SONOS cell transistors with larger interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. Therefore, to improve SANOS memory characteristic, it is very important to optimize the interface trap and charge trapping layer.

  • PDF

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • Kim, Ung-Seon;Mun, Yeon-Geon;Gwon, Tae-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF

Temperature dependence of Heteroeptaxial $Y_2O_3$ films grown on Si by ionized cluster beam deposition

  • Cho, M.-H.;Ko, D.-H.;Whangbo, S.W.;Kim, H.B.;Jeong, K.H.;Whang, C.N.;Choi, S.C.;Cho, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.57-77
    • /
    • 1998
  • Heteroepitaxial $Y_2O_3$ films were grown on a Si(111) substrate by ionized cluster beam deposition(ICBD) in ultra high vacuum, and its qualities such as crystllitnity, film stress, and morphological characteristics were investigated using the various measurement methods. The crystallinity was investigated by x-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED). Interface crystallinity was also examined by Rutherford backscattering spectroscopy(RBS) channeling, transmission electron microscopy(TEM). The stress of the films was measured by RBS channeling and XRD. Surface and interface morphological characteristics were investigated by atomic force microscopy (AFM) and x-ray scattering method. Comparing the interface with the surface characteristics, we can conclude that many defects at the interface region were generated by interface reaction between the yttrium metal and SiO2 layer and by ion beam characteristic such as shallow implantation, so that they influenced the film qualities. The film quality was dominantly depended on the characteristic temperature range. In the temperature range from $500^{\circ}C$ to $600^{\circ}C$, the crystallinity was mainly improved and the surface roughness was drastically decreased. On the other hand, in the temperature range from $600^{\circ}C$ to $700^{\circ}C$, the compressive stress and film density were dominantly increased, and the island size was more decreased. Also the surface morphological shape was transformed from elliptical shape to triangular. The film stress existed dominantly at the interface region due to the defects generation.

  • PDF

A Fire Detection System Using Fuzzy Logic with Input Variables of Temperature and Smoke Density (열과 연기농도를 입력변수로 갖는 퍼지로직을 이용한 화재감지시스템)

  • Hong Sung-Ho;Kim Doo-Hyun;Kim Sang-Chul
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.42-51
    • /
    • 2004
  • This paper presents a study on the analysis of fire detection system using fuzzy logic with input variables of temperature and smoke density. The input variables for the fuzzy logic algorithm are measured by fire experiment of small scale with temperature detector and smoke detector. The antecedent part of fuzzy rules consists of temperature and smoke density, and the consequent part consists of fire possibility. Also the triangular fuzzy membership function is chosen for input variables and fuzzy rules to simplify computation. In order to calculate fuzzy values of such fuzzy system, a computer program is developed with Matlab based on graphics user interface. The experiment was conducted with paper and ethanol to simulate flaming fire and with plastic and sawdust to model smoldering fire. The results showed that the fire detection system presented here was able to diagnose fire very precisely. With the help of algorithms using fuzzy logic we could distinguish whether fire or not.

Electrical Characteristics of ZnO-Pr6O11-CoO-Cr2O3-Y2O3 -Based Varistor Ceramics (ZnO-Pr6O11-CoO-Cr2O3-Y2O3계 바리스터 세라믹스의 전기적 특성)

  • 남춘우;김향숙
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.664-670
    • /
    • 2002
  • The electrical characteristics of $ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Y_2O_3$(ZPCCY)-based varistors were investigated with $Y_2O_3$ content in the range of 0.0~4.0 mol%. As $Y_2O_3$ content is increased, the average grain size was markedly decreased in the range of 18.6~3.2 $\mu m$ and the density of the ceramic was decreased in the range of 5.53 ~3.74 $g/\textrm{cm}^3$. While, the varistor voltage was increased in the range of 39.4~748.1 V/mm and the nonlinear exponent was in the range of 4.5~51.2 with increasing $Y_2O_3$ content. The addition of $Y_2O_3$ greatly enhanced the nonlinear properties of varistors, compared with the varistor without $Y_2O_3$. In particular, the varistors with $Y_2O_3$content of 0.5 mol% exhibited the highest nonlinearity, in which the nonlinear exponent is 51.2 and the leakage current is 1.3 $\mu A$. The donor concentration and the density of interface states were decreased in the range of (4.19~0.14) $\times$10$^{18}$ /㎤ and (5.38~1.15)${\times}10^{18}/\textrm{cm}^3$, respectively, with increasing $Y_2O_3$ content.