• Title/Summary/Keyword: Density function theory

Search Result 196, Processing Time 0.026 seconds

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particl Flow in a Pipe(II) - Mechanism of Heat Transfer- (고체 분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용 (II) - 열전달 기구 -)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.214-224
    • /
    • 1990
  • A "two-fluid" model using thermal eddy diffusivity concept and Lumley's drag reduction theory, is proposed to analyze heat transfer of the turbulent dilute gas-particle flow in a vertical pipe with constant wall heat flux. The thermal eddy diffusivity is derived to be a function of the ratio of the heat capacity-density products .rho. over bar $C_{p}$ of the gaseous phase and the particulate phase and also of the ratio of thermal relaxation time scale to that of turbulence. The Lumley's theory dictates the variation of the viscous sublayer thickness depending on the particle loading ratio Z and the relative particle size $d_{p}$/D. At low loading ratio, the size of viscous sublayer thickness is important for suspension heat transfer, while at higher loading, the effect of the ratio .rho. $_{p}$ over bar $C_{p}$$_{p}$/ .rho. $_{f}$ over bar $C_{p}$$_{f}$ is dominant. The major cause of decrease in the suspension Nusselt number at lower loading ratio is found to be due to the increase of the viscous sublayer thickness caused by the suppression of turbulence near the wall by the presence of solid particles. Predicted Nusselt numbers using the present model are in satisfactory agreements with available experimental data both in pipe entrance and the fully developed regions.

Surface Properties of Glutathione Layer Formed on Gold Surfaces (금 표면 위에 형성된 글루타싸이온 층의 표면 물성)

  • Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.379-384
    • /
    • 2012
  • It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. With the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the forces were quantitatively analyzed to acquire the surface potential and charge density of the surfaces for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8 and 11, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8 and 11, which may be attributed to the ionized-functional-groups of the Glutathione layer.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

MODEL CALCULATIONS OF THE UV - EXCITED MOLECULAR HYDROGEN IN INTERSTELLAR CLOUDS

  • Lee, Dae-Hee;Pak, Soo-Jong;Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.7-10
    • /
    • 2005
  • We have calculated 2448 interstellar cloud models to investigate the formation and destruction of high rotational level $H_2$ according to the combinations of five physical conditions: the input UV intensity, the $H_2$ column density, cloud temperature, total density, and the $H_2$ formation rate efficiency. The models include the populations of all the accessible states of $H_2$ with the rotational quantum number J < 16 as a function of depth through the model clouds, and assume that the abundance of $H_2$ is in a steady state governed primarily by the rate of formation on the grain surfaces and the rates of destruction by spontaneous fluorescent dissociation following absorption in the Lyman and Werner band systems. The high rotational levels J = 4 and J = 5 are both populated by direct formation into these levels of newly created molecules, and by pumping from J = 0 and J = 1, respectively The model results show that the high rotational level ratio N(4)/N(0) is proportional to the incident UV intensity, and is inversely proportional to the $H_2$ molecular fraction, as predicted in theory.

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving (자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구)

  • Yoon, Jeongsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

A Computational Mineralogy Study of the Crystal Structure and Stability of Aluminum Silicate (Al2SiO5) Minerals (알루미늄 규산염(Al2SiO5) 광물의 결정구조와 안정성에 대한 계산광물학 연구)

  • Kim, Juhyeok;Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • Aluminum silicates ($Al_2SiO_5$) undergo phase transitions among kyanite, andalusite, and sillimanite depending on temperature and pressure conditions. The minerals are often used as an important indicator of the degree of metamorphism for certain metamorphic rocks. In this study, we have applied classical molecular dynamics (MD) simulations and density functional theory (DFT) to the aluminum silicates. We examined the crystal structures as a function of applied pressure and the corresponding stabilities based on calculated enthalpies at each pressure. In terms of the lattice parameters, both methods showed that the volume decreases as the pressure increases as observed in the experiment. In particular, DFT results differed from experimental results by much less than 1%. As to the relative stability, however, both methods showed different levels of accuracy. In the MD simulations, a transition pressure at which the relative stability between two minerals reverse could not be determined because the enthalpies were insensitive to the applied pressure. On the other hand, in DFT calculations, the relative stability relation among the three minerals was consistent with experiment, although the transition pressure was strongly dependent on the choice of the electronic exchange-correlation functional.

Ab-initio Calculations of Mg Silicate and (hydr)oxide Core-level Absorption Spectra (Mg 규산염 및 (수)산화물에 대한 제일원리 내각준위 흡수 스펙트럼 계산 연구)

  • Son, Sangbo;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.121-131
    • /
    • 2021
  • Magnesium (Mg) present in carbonate minerals as impurities has been used as a geochemical proxy to infer the environmental conditions where the minerals precipitated. The reliability of Mg geochemical proxies requires fundamental understanding of Mg incorporation into minerals based on accurate speciation of Mg 2+ in the crystal structure, which is determined mainly by application of X-ray absorption spectroscopy (XAS). However, high uncertainties are involved in interpreting the XAS spectra of minerals containing trace amount of Mg 2+. Because density function theory (DFT) can predict an XAS spectrum for a crystal structure, DFT calculations can reduce the uncertainties in the interpretation of the XAS spectrum. In this study, we calculated ab initio Mg K-edge absorption spectra of Mg silicates and (hydr)oxides based on DFT and analyzed the correlation between the calculated spectra and Mg structural parameters. Our ab initio Mg K-edge absorption spectra well reproduced the key features of the experimental spectra. The absorption-edge positions of the calculated spectra showed the weak positive correlation with the average Mg-O bond distance or Mg effective coordination number. The current study shows that DFT-based core-level spectroscopy method is a powerful tool in providing standard Mg K-edge spectra of diverse Mg minerals and determining the Mg chemical species within carbonate minerals.

Research on Changes in Short Circuit Current of C-Si Solar Cell by Charge Density Waves (전하밀도파 이론으로 결정질 태양전지의 입사각에 따른 단락전류밀도 변화 연구)

  • Seo, Il Won;Koo, Je Huan;Yun, Myoung Soo;Jo, Tae Hoon;Lee, Won Young;Cho, Guang Sup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • We measure solar currents transformed from quantum efficiency as a function of incident angles of solar lights. According to conventional models for solar cells, solar currents can be induced when electrons are separated into electrons and holes in the presence of incident solar lights. On the contrary, solar currents can be possible at the time when pinned charge density waves go beyond the pinning potential barrier under the influence of incident solar beams suggested by some authors. In this experiment, measured solar currents and our theory are in good correspondence to confirm the angle dependence of solar lights.

Application of Perturbation-based Sensitivity Analysis to Nuclear Characteristics (섭동론적 감도해석 이론의 원자로 핵특성에의 응용)

  • Byung Soo Lee;Mann Cho;Jeong Soo Han;Chung Hum Kim
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 1986
  • An equation of material number density sensitivity coefficient is derived using first-order perturbation theory. The beginning of cycle of Super-Phenix I is taken as the reference system for this study. Effective multiplication factor of the reference system is defined as system response function and fuel enrichment and fuel effective density are chosen for the variation of reference input data since they are described by material number density which is a component of Boltzmann operator. The nuclear computational code system (KAERI-26 group cross section library/1DX/2DB/PERT-V) is employed for this calculation. Sensitivity coefficient of fuel enrichment on effective multiplication factor is 4.576 and sensitivity coefficient of effective fuel density on effective multiplication factor is 0.0756. This work shows that sensitivity methodology is lesser timeconsuming and gives more informations on important design parameters in comparison with the direct iterative calulation through large computer codes.

  • PDF