• Title/Summary/Keyword: Density evolution

Search Result 501, Processing Time 0.023 seconds

The Effects of TiC Content on Microstructure of Modified A6013-3wt.%Si Alloy Powder Compact (TiC 첨가량에 따른 개량된 A6013-3wt.%Si 합금 분말성형체의 미세조직 변화)

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.28-33
    • /
    • 2022
  • Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 ㎛ which decreases to 12.5, 13.9, 10.8, and 10.0 ㎛ with increments in the amount of TiC.

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.

Microstructure characterization technique of spacer garter spring coil X-750 material (스페이서 가터 스프링 코일 X-750 소재 정밀 조직 분석 방법)

  • Hyung-Ha Jin;I Seol Ryu;Gyeng-Geun Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.109-118
    • /
    • 2021
  • In the periodic surveillance material test for the spacer component of fuel channel assembly in CANDU, a microstructural characterization analysis is required in addition to the mechanical property evaluation test. In this study, detailed microstructure analysis and simple mechanical property evaluation of archive spacer parts were conducted to indirectly support the surveillance test and assist in the study of spacer material degradation. We investigated the microstructural characteristics of the spacer garter spring coil through comparative analysis with the plate material. The main microstructure characteristics of the garter spring coil X-750 are represented by the fine grain size distribution, the ordering phase distribution developed inside the matrix, the high dislocation density inside the grains, and the arrangement of coarse carbides. In addition, the yield strength of the garter spring coil X-750 was indirectly evaluated to be approximately 1 GPa. We also established an analytical method to elucidate the microstructural evolution of the radioactive spacer garter spring coil X-750 based on Canadian research experiences. Finally, we confirmed the measurement technique for helium bubble formation through TEM examination on the helium implanted X-750 material.

Long Length YBCO Coated Conductors Prepared by an MOD Process on Buffered Metallic Tapes

  • Chung, Kook-Chae;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk;Kim, Tae-Hyung;Ko, Rock-Kil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.12-14
    • /
    • 2006
  • YBCO coated conductors have been fabricated by the reel-to-reel processing using TFA-MOD method. In this work, the fluorine-free Y & Cu precursor solution was synthesized to shorten the calcining time by reducing the evolution of HF gas, thus the meter-long YBCO precursor films can be made within few hours by the continuous slot-die coating & calcination step using the F-free Y & Cu precursor solution. The annealing step was followed to make the YBCO films by the reel-to-reel method with the vertical gas flow system onto the moving tape. To increase the growth rate of the YBCO films by enhancing the removal of HF gas, the low total pressure was adopted in the annealing processing. And the water partial pressure and the oxygen partial pressure were varied to optimize the growth conditions of the MOD-YBCO films on the buffered metal tape. FE-SEM and XRD were used to investigate the surface morphologies and the texture of the meter-long YBCO films. The end-to-end critical current $(I_c)$ of 63A/cm-width and the critical current density $(J_c)$of $0.9MA/cm^2$ with the thickness of $0.7{\mu}m$ were obtained in the 0.42m long coated conductor.

Large Scale Structures at z~1 in SA22 Field and Environmental Dependence of Galaxy Properties

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook;Paek, Insu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.68.1-68.1
    • /
    • 2021
  • We study galaxy evolution with the large-scale environment with confirmed galaxy clusters from multi-object spectroscopy (MOS) observation. The observation was performed with Inamori Magellan Areal Camera and Spectrograph (IMACS) mounted on the 6.5 m Magellan/Baade telescope in Las Campanas Observatory. With the MOS observation, we spectroscopically confirm 34 galaxy clusters, including three galaxy clusters discovered in Kim et al. (2016) and 11 of them have halo mass of > 1014.5 M. Among the confirmed clusters, 12 galaxy clusters are part of large-scale structure at z ~ 0.9, and their size stretches to 40 Mpc co-moving scale. In this study, we checked the 'web feeding model,' which postulates that more linked (with their environment) galaxy clusters have less quenched populations by investigating the correlation between properties of confirmed galaxy clusters and the large-scale structure environment. Lastly, we found that galaxy clusters that make up the large-scale structure have larger and widely spread values of total star formation density (ΣSFR/Mhalo) than typical clusters at similar redshifts.

  • PDF

The Kinematic Properties of Young Stars in NGC 281: its implication on star formation process (NGC 281의 젊은 별들의 운동학적 특성)

  • Kim, Seulgi;Lim, Beomdu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.81.1-81.1
    • /
    • 2021
  • Stellar kinematics is a useful tool to understand the formation and evolution of young stellar systems. Here, we present a kinematic study of the HII region, NGC 821, using the Gaia Early Data Release 3. NGC 281 contains the open cluster IC 1590. This cluster has a core and a low-stellar density halo. We detect a pattern of cluster expansion from the Gaia proper motion vectors. Most stars radially escaping from the cluster are distributed in the halo. We measure the 1-dimensional velocity dispersion of stars in the core. The velocity dispersion (1 km/s) is comparable to the expected virial velocity dispersion of this cluster, and therefore the core is at a virial state. The core has an initial mass function shallower than that of the halo, which is indicative of mass segregation. However, there is no significant correlation between stellar masses and tangential velocities. This result suggests that the mass segregation has a primordial origin. On the other hand, it has been believed that the formation of young stars in NGC 281 West was triggered by feedback from massive stars in IC 1590. We investigate the ages of stars in the two regions, but the age difference between the two regions is not comparable to the timescale of the passage of an ionization front. Also, the proper motion vectors of the NGC 281 West stars relative to IC 1590 do not show any systematic receding motion from the cluster. Our results suggest that stars in NGC 281 West might have been formed spontaneously. In conclusion, the formation of NGC 281 can be understood in the context of hierarchical star formation model.

  • PDF

The Origin of the Type III Component in the Black Eye Galaxy M64

  • Kang, Jisu;Kim, Yoo Jung;Lee, Myung Gyoon;Jang, In Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2021
  • The Black Eye Galaxy M64 is an intriguing spiral galaxy with a Type III disk break. To trace the origin of its Type III component, we present HST/ACS F606W/F814W photometry of resolved stars in the outer disk of M64 (2.5' < R < 6.5'). First, we discover a bright extended globular cluster (GC) M64-GC1 at R ~ 5.5', and find that it is an old metal-poor halo GC ([Fe/H] = -1.5 +/- 0.2). Second, we find that there are two distinct subpopulations of red giant branch stars (RGBs). One is an old metal-rich ([Fe/H] ~ -0.4) disk population, and the other is an old metal-poor halo population similar to the resolved stars in M64-GC1. The radial number density profile of the metal-rich RGB follows an exponential disk law, while that of the metal-poor RGB follows a de Vaucouleurs's low. From these results, we conclude that the origin of the Type III component in M64 is a halo, not a disk or a bulge. We will further discuss the results in regards to the formation and evolution of M64.

  • PDF

Data-driven Approach to Explore the Contribution of Process Parameters for Laser Powder Bed Fusion of a Ti-6Al-4V Alloy

  • Jeong Min Park;Jaimyun Jung;Seungyeon Lee;Haeum Park;Yeon Woo Kim;Ji-Hun Yu
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.137-145
    • /
    • 2024
  • In order to predict the process window of laser powder bed fusion (LPBF) for printing metallic components, the calculation of volumetric energy density (VED) has been widely calculated for controlling process parameters. However, because it is assumed that the process parameters contribute equally to heat input, the VED still has limitation for predicting the process window of LPBF-processed materials. In this study, an explainable machine learning (xML) approach was adopted to predict and understand the contribution of each process parameter to defect evolution in Ti alloys in the LPBF process. Various ML models were trained, and the Shapley additive explanation method was adopted to quantify the importance of each process parameter. This study can offer effective guidelines for fine-tuning process parameters to fabricate high-quality products using LPBF.

Production of multipurpose cotton fabrics to improve the quality of aerobic and dance sportswear

  • Mingfa Gao;Bin Long
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.165-173
    • /
    • 2024
  • The production of multipurpose cotton fabrics aimed at elevating the quality of aerobic and dance sportswear is explored in this study. Powder metallurgy, known for its high efficiency in manufacturing technological components with minimal waste, is employed as a method for fabricating brush ferrules for painting. The utilization of iron-copper material, prepared through powder metallurgy, enhances the strength and quality of the brush ferrules. A microscopic analysis reveals a robust interconnection between the particles of each layer achieved through isostatic pressure, resulting in a favorable microstructure. The relative density and strength of parts produced from copper-iron powder exhibit an increase with higher pressure levels. The application of this material in brush ferrules ensures their durability and longevity, thereby supporting the creation of artwork. The evolution of art over time reflects changing ideas and possibilities, and technological advancements have significantly improved artistic tools. The role of tools in artistic expression is paramount, and the integration of powder metallurgy materials in brush ferrules fortifies their artistic importance. In summary, this study underscores the advantages of powder metallurgy in augmenting the quality of art tools and facilitating artistic creation.

Microstructural evolution and mechanical properties of TiC-Mo2C-WC-Ni multi-component powder by high energy ball milling

  • Jeong-Han Lee;Hyun-Kuk Park
    • Journal of Ceramic Processing Research
    • /
    • v.22 no.5
    • /
    • pp.590-596
    • /
    • 2021
  • The widespread use of TiC-based cermets as cutting tools, thin-film, ultracapacitors, nozzles, and bearings is primarily due to exhibit combination of excellent mechanical properties such as low density, high hardness, and stiffness. The TiC cermets were synthesized by high energy ball milling, which includes binder metal (Ni), carbides (WC and Mo2C), wherein the present study focus on the relationship between the core-rim structure, phase constitution, and mechanical properties. Here, using in situ TEM, we clearly observed the behavior of adjacent core-rim formation from the solid-phase reaction with grain refinement of the TiC phase control of both the milling time and lattice formation. Also, we proposed that mechanically alloyed core-rim structure can affect oxidation resistance of TiC-Mo2C-WC-Ni cermets strongly related to activation energy attributed to TiC particle size. The mechanical properties of TiC-Mo2C-WC-Ni cermets suggest the hardening effect is not considered only grain refinement, but rather is solid solution strengthening and particle-dispersion hardening. The present study paves the relation to the formation behavior of both TiC hard phase and core-rim structure due to the mechanical powder synthesis of novel TiC-based cermets.