• Title/Summary/Keyword: Density evolution

Search Result 487, Processing Time 0.026 seconds

TWO-FLUID CLOSURE PARAMETERS FOR DIFFUSIVE ACCELERATION OF COSMIC RAYS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 1993
  • In order to explore the time dependence of the closure parameters of the two-fluid calculations for supernova remnants and the terminal shocks of stellar winds, we have considered a simple model in which the time evolution of the cosmic-ray distribution function was followed in the test-particle limit using the Bohm diffusion model. The particles are mostly accelerated to relativistic energy either in the free expansion phase of the SNRs or in the early phase of the stellar winds, so the evolution of the closure parameters during these early stages is substantial and should be followed correctly. We have also calculated the maximum momentum which is limited by either the age or the curvature of these spherical shocks. We found that SNRs expanding into the medium where the gas density decreases with the distance from the explosion center might be necessary to explain the observed power-law distribution of the galactic cosmic rays. The energy loss due to the escaping energetic particles has been estimated for the terminal shocks of the stellar winds.

  • PDF

MOLECULAR GAS PROPERTIES UNDER ICM PRESSURE IN THE CLUSTER ENVIRONMENT

  • LEE, BUMHYUN;CHUNG, AEREE
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.491-494
    • /
    • 2015
  • We present 12CO (2-1) data for four spiral galaxies (NGC 4330, NGC 4402, NGC 4522, NGC 4569) in the Virgo cluster that are undergoing different ram pressure stages. The goal is to probe the detailed molecular gas properties under strong intra-cluster medium (ICM) pressure using high-resolution millimeter data taken with the Submillimeter Array (SMA). Combining this with Institut de RadioAstronomie $Millim{\acute{e}}trique$ (IRAM) data, we also study spatially resolved temperature and density distributions of the molecular gas. Comparing with multi-wavelength data (optical, $H\small{I}$, UV, $H{\alpha}$), we discuss how molecular gas properties and star formation activity change when a galaxy experiences $H\small{I}$ stripping. This study suggests that ICM pressure can modify the physical and chemical properties of the molecular gas significantly even if stripping does not take place. We discuss how this affects the star formation rate and galaxy evolution in the cluster environment.

Lyα spectrum regulated by the cold interstellar medium surrounding H II regions

  • Seon, Kwang-il;Kang, Jun-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.73.5-73.5
    • /
    • 2019
  • Studying the amount and kinematics of circumand intergalactic medium (CGM and IGM) is key to understanding the role of feedback and environment (cold streams and galactic winds) in the evolution of galaxies. In particular, $Ly{\alpha}$ emission line has been utilized to investigate the density structure and kinematics of the (most abundant) H I gas in the CGM and IGM around galaxies. Therefore, modeling $Ly{\alpha}$ radiative transfer through multiphase interstellar medium (ISM), CGM and IGM is crucial in understanding the galaxy evolution. As discussed in Kakiichi & Dijkstra (2018), most $Ly{\alpha}$ RT effects would occur on interstellar scales. This is because the main source of $Ly{\alpha}$ photons would be H II regions, which are in most cases, if not all, surrounded by "cold" photo-dissociation regions. However, most $Ly{\alpha}$ RT studies have been performed in the CGM and IGM environments with T ~ 10,000K. In this talk, we present how the $Ly{\alpha}$ RT effect in the cold ISM with T ~ 100 K regulates the $Ly{\alpha}$ spectral properties.

  • PDF

DYNAMICAL AND STATISTICAL ASPECTS OF GRAVITATIONAL CLUSTERING IN THE UNIVERSE

  • SAHNI V.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.19-21
    • /
    • 1996
  • We apply topological measures of clustering such as percolation and genus curves (PC & GC) and shape statistics to a set of scale free N-body simulations of large scale structure. Both genus and percolation curves evolve with time reflecting growth of non-Gaussianity in the N-body density field. The amplitude of the genus curve decreases with epoch due to non-linear mode coupling, the decrease being more noticeable for spectra with small scale power. Plotted against the filling factor GC shows very little evolution - a surprising result, since the percolation curve shows significant evolution for the same data. Our results indicate that both PC and GC could be used to discriminate between rival models of structure formation and the analysis of CMB maps. Using shape sensitive statistics we find that there is a strong tendency for objects in our simulations to be filament-like, the degree of filamentarity increasing with epoch.

  • PDF

The rise and fall of dusty star formation in (proto-)clusters

  • Lee, Kyung-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2019
  • The formation and evolution of galaxies is known to be fundamentally linked to the local environment in which they reside. In the highest-density cluster environments, galaxies tend to be more massive, have lower star formation rates and dust content, and a higher fraction have elliptical morphologies. The stellar populations of these cluster galaxies are older implying that they formed the bulk of their stars much earlier and have since evolved passively. Quantifying the specific environmental factors that contribute to shaping cluster galaxies over the Hubble time and measuring their early evolution can only be accomplished by directly tracing the galaxy growth in young clusters and forming porto-clusters. In this talk, I will present a novel technique designed to map out the total dust obscured star formation relative to where existing stars lie. I will demonstrate that this technique can be used 1) to determine if/where/when the activity is heightened or suppressed in dense cluster environment; 2) to measure the total mass and spatial distribution of stellar populations; and 3) to better inform theoretical models. Our ongoing work to extend this analysis out to protoclusters (z~2-4) will be discussed.

  • PDF

The Nature of Submillimeter Galaxies in the North Ecliptic Pole SCUBA-2 Survey

  • Lee, Dongseob;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2020
  • Submillimeter galaxies (SMGs) have played an important role in the understanding of galaxy evolution and cosmic star formation history at high redshift because they are known as being located at z ~ 2 and harbor a vigorous star formation. Therefore studying properties of SMGs can lead us to understand evolution of massive and actively star forming galaxies and distribution of cosmic star formation density. Recently we detected 548 SMGs near North Ecliptic Pole with JCMT/SCUBA-2 from the JCMT large program covering about 2 deg2 so far. To derive their physical parameters, we compiled a multi-wavelength photometry ranging from optical (0.3 ㎛) to submillimeter (850 ㎛) by cross-identifying counterparts at different wavelengths. In order to find counterparts, we used either VLA-1.4 GHz image and/or Spitzer/IRAC 3.6 ㎛, 4.5 ㎛ image. The number of SMGs with relatively robust counterparts is 349. In this talk, we present photometric redshifts, stellar mass, star formation rates, total infrared luminosity, and AGN fraction of these 349 SMGs derived through SED fitting analysis.

  • PDF

The Effect of Additives on the High Current Density Copper Electroplating (고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Hur, Ki-Su;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • The current density in copper electroplating is directly related with the productivity and then to increase the productivity, the increase in current density is required. To obtain the high mass flow rate, rotating disk electrode(RDE) was employed. High rotational speed in RDE can increase the mass flow rate and then high speed electroplating was possible using RDE to control mass flow. Two types of cathode were used. One is RDE and another is rotating cylindrical electrode(RCE). A constant-current, constant-voltage and linear sweep voltammetry were applied to investigate current and voltage relationship. The maximum current density without evolution of hydrogen gas was increased with rotational speed. Over 400 rpm, maximum current density was higher than 1000 A/$m^2$. The diffusion coefficients of copper calculated from the slope of the plots are $5.5{\times}10^6\;cm^2\;s^{-1}$ at $25^{\circ}C$ and $10.5{\times}10^6\;cm^2\;s^{-1}$ at $62^{\circ}C$. The stable voltage without evolution of hydrogen gas was -0.05 V(vs Ag/AgCl). Additives were added to prevent dendritic growth on cathode deposits. The surface roughness was analyzed with UV-Vis Spectrophotometer. The reflectance of the copper surface over 600 nm was measured and was related with the surface roughness. As the surface roughness improved, the reflectance was also increased.

Effects of Electrodeposition Parameters on Electrochemical Hydroxyl Radical Evolution of PbO2 Electrode (이산화납 전극 제조 시 전기화학적 증착인자가 수산화라디칼 발생에 미치는 영향)

  • Shim, Soojin;Yoon, Jeyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.647-655
    • /
    • 2016
  • Lead dioxide ($PbO_2$) is an electrode material that is effective for organic pollutant degradation based on hydroxyl radical ($^{\bullet}OH$) attack. Representative parameters for $PbO_2$ electrodeposition are summarized to current, temperature, reaction time, concentration of Pb(II) and electrolyte agent. In this study, $Ti/PbO_2$ electrodes were fabricated by electrodeposition method under controlled reaction time, current density, temperature, concentration of $HNO_3$ electrolyte. Effects of deposition parameters on $^{\bullet}OH$ evolution were investigated in terms of electrochemical bleaching of p-Nitrosodimethylaniline (RNO). As major results, the $^{\bullet}OH$ evolution was promoted at the $PbO_2$ that was deposited in longer reaction time (1-90 min), lower current density ($0.5-50mA/cm^2$), higher temperature ($5-65^{\circ}C$) and lower $HNO_3$ concentration (0.01-1.0 M). Especially, the $PbO_2$ which was deposited in 0.01 M of lowest $HNO_3$ concentration by applying $20mA/cm^2$ for above 10 min was most effective on $^{\bullet}OH$ evolution. The performance gap between $PbO_2$s that was best and worst in $^{\bullet}OH$ evolution was about 41%. Among the properties of $PbO_2$ related on $^{\bullet}OH$ evolution performance, conductivity of $Ti/PbO_2$ significantly influenced on $^{\bullet}OH$ evolution. The increase in conductivity promoted $^{\bullet}OH$ evolution. In addition, the increase in crystal size of $PbO_2$ interfered $^{\bullet}OH$ evolution at surface of some $PbO_2$ deposits.

Investigation of LiO2 Adsorption on LaB1-xB'xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study

  • Kwon, Hyunguk;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.306-311
    • /
    • 2016
  • Li-air batteries have received much attention due to their superior theoretical energy density. However, their sluggish kinetics on the cathode side is considered the main barrier to high performance. The rational design of electrode catalysts with high activity is therefore an important challenge. To solve this issue, we performed density functional theory (DFT) calculations to analyze the adsorption behavior of the $LiO_2$ molecule, which is considered to be a key intermediate in both the Li-oxygen reduction reaction (ORR) and the evolution reaction (OER). Specifically, to use the activity descriptor approach, the $LiO_2$ adsorption energy, which has previously been demonstrated to be a reliable descriptor of the cathode reaction in Li-air batteries, was calculated on $LaB_{1-x}B^{\prime}_xO_3$(001) (B, B' = Mn, Fe, Co, and Ni, x = 0.0, 0.5). Our fast screening results showed that $LaMnO_3$, $LaMn_{0.5}Fe_{0.5}O_3$, or $LaFeO_3$ would be good candidate catalysts. We believe that our results will provide a way to more efficiently develop new cathode materials for Li-air batteries.

An Approximate Analytical Solution for the Unsteady Close-Contact Melting on a Flat Surface with Constant Heat Flux (등열유속에 의한 평판위 비정상 접촉융해에 대한 근사적 해석해)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1726-1734
    • /
    • 1998
  • This paper focuses on the unsteady close-contact melting phenomenon occurring between a phase change material kept at its melting temperature and a flat surface on which constant heat flux is imposed. Based on the same simplifications and framework of analysis as the case of constant surface temperature, an approximate analytical solution which depends only on the liquid-to-solid density ratio is successfully derived. In order to keep consistency with the known solution procedure, both the dimensionless wall heat flux and the Stefan number are properly redefined. The obtained solution proves to agree quite well with the published numerical data and to be capable of resolving the fundamental features of unsteady close-contact melting, especially in the presence of the solid-liquid density difference. The density ratio directly affects the film growth rate and the initial value of solid descending velocity, thereby controlling the duration of unsteady process. The effects of other parameters can be evaluated readily from the steady solution which is implied in the normalized result. Since the dimensionless surface temperature for the present boundary condition increases from zero to unity along the evolution path of the liquid film thickness, the unsteady process lasts longer than that for the case of isothermal heating.