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ABSTRACT

In order to explore the time dependence of the closure parameters of the two-fluid calculations for supernova
remnants and the terminal shocks of stellar winds, we have considered a simple model in which the time evolution
of the cosmic-ray distribution function was followed in the test-particle limit using the Bohm diffusion model.
The particles are mostly accelerated to relativistic energy either in the free expansion phase of the SNRs or
in the early phase of the stellar winds, so the evolution of the closure parameters during these early stages is
substantial and should be followed correctly. We have also calculated the maximum momentum which is limited
by either the age or the curvature of these spherical shocks. We found that SNRs expanding into the medium
where the gas density decreases with the distance from the explosion center might be necessary to explain the
observed power-law distribution of the galactic cosmic rays. The energy loss due to the escaping energetic
particles has been estimated for the terminal shocks of the stellar winds.
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I. INTRODUCTION

The idea that cosmic rays (CRs) can be injected at the astrophysical shocks and the pre-existing particles can be re-
energized by the diffusive shock process has been widely recognized and accepted (e.g. Axford 1981; Blandford & Eichler
1987; Berezhko & Krymskii 1988). It has been shown that supernova remnants (SNRs) expanding into the hot interstellar
medium (ISM) may be able to accelerate the CRs up 10'*eV (Lagage and Cesarsky 1983, LC hereafter; Kang & Jones
1991) and replenish galactic CRs by transferring 10% or more of the original supernova explosion energy into energetic
particle component (Dorfi 1990, 1991; Drury, Markiewicz & V6lk 1989, Markiewicz, Drury & Volk 1990; Jones & Kang
1990, 1992). It has been pointed out, however, the efficiency of the diffuse shock acceleration is rather sensitively dependent
upon the details of the various models. In particular, the amount of CR energy gain in time-dependent simulations of
cosmic-ray shocks using the two-fluid method varies substantially with the ratio of specific heats for the CRs, 7. and the
mean diffusion coefficient, (k) (Jones & Kang 1992; Kang & Drury 1992).

In the two-fluid model of Drury and Volk (1981) the CRs are represented as a diffuse, massless fluid which interacts
with the thermal gas through an isotropic pressure. With the appropriate closure parameters, v, and {x}, the two-fluid
model provides a powerful and practical tool to explore a wide range of problems of diffusive shock acceleration (Jones
and Kang 1990). One should, however, use extreme caution utilizing this method, because in the two-fluid model we
lose the information about the particle distribution function which is needed to calculate self-consistently the two-fluid
closure parameters, and because the two-fluid calculations actually sensitively depend upon those parameters. Kang and
Drury (1992), for example, demonstrated the importance of this aspect of the two-fluid model by showing that the large
discrepancy between the results of full numerical hydrodynamic simulations of Jones and Kang (1990) and those of the
simplified model for SNRs of Drury, Markiewicz, V5lk (1989) would be eliminated when both techniques based on the
two-fluid model use similar time-dependent closure parameters.

Jones and Kang (1992) carried out the two-fluid calculation of SNRs with the time-dependent models for the closure
parameters which were estimated by assuming a simple time evolution of the distribution function in the test-particle limit.
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The mean diffusion coefficient was estimated according to the test-particle distribution function and the Bohm diffusion
model, while the specific heat ratio for the CRs was modeled to decrease exponentially from 5/3 to 4/3 on the order of
the acceleration time scale. They found that it was physically plausible that SNRs can channel of order 10 % of the initial
explosion energy into galactic cosmic rays. This result is consistent with findings of previous studies mentioned the above.
In the present paper we estimated the time-dependence of both v, and (k) from the test-particle distribution function
for adiabatic blast waves in SNRs and the terminal shocks in the stellar winds. These models should provide a guide to
approximate the time-dependence of closure parameters for two-fluid calculations of these spherical shocks. We focus only
on modeling the closure parameters in the present work. The two-fluid calculations using the results of this work will be
presented somewhere else. On our way to calculate the distribution function, we also estimate the maximum momentum
which is limited by either the age or the curvature effect of the spherical shocks, and the fraction of energy lost due to the
escaping energetic particles. In §2 we briefly show how the closure parameters are defined in the two-fluid model. Then
the time evolutions of the spherical shocks and the basic assumptions of our models are described in §3, while the results
are presented in §4. We discuss the implications of this study in §5.

II. TWO-FLUID APPROXIMATION

The transport equation for the isotropic part of the cosmic ray distribution function can be written according to (Skilling

1975)

d 1 = of = =

—==(V-d)p=—+V - («kVH +Q, 2.1

7= 3 )p6p+ (,V) +Q (2.1)
where f(z,p,t) is the number density of particles in phase space, d/dt is the total time derivative, x is the diffusion
coefficient, i is the background fluid velocity, and Q is the source term representing the particle injection. It is assurmned
that the isotropic part of the distribution function is dominant due to strong scattering of cosmic rays. In the two-fluid
model, Eq. (2.1) is multiplied by the kinetic energy of particles and integrated with respect to momentum. This produces
the energy conservation equation for the CR,

dE.
dt ‘
where E. and v, are the CR energy density and the ratio of specific heats, respectively. The mean diffusion coefficient is

defined according to
P fRlVp? 1 - 1]pPdp

= % Ee(V @) + V- (x)VE.), (22)

() = . (2.3)
vt fIVP?+1 - 1]pdp
Hereafter the momentum p is expressed in units of me. The specific heat ratio is defined as
P
=14+ —,
Ye + E,
while . A .
Tme P
P, = / f dp, (2.49)
’ 3 Po V p?+1

P1
E.= 47rmc2/ P’(Vp?2+1—1)f dp. (2.5)
Po

The gas dynamics equations with terms added to account for CR pressure can be found in many previous papers (e.g.
Jones & Kang, 1990)

III. MODELS

(a) Similarity Solutions for Spherical Shocks
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Our galaxy loses its energy at a rate of ~ 10%%rg s~! due to the escaping galactic CRs. It is believed that the kinetic
energy input from SNRs (E ~ 10*%erg s™!) and the stellar winds from massive stars (E ~ 10% — 10*erg s™!) could be
the major sources of the energy which replenish such loss. In our paper we will concentrate on three types of spherical
shocks of astrophysical interests all of which have a well-known solutions: 1) SNR in a uniform ISM of p,, 2) SNR in a
medium whose density decreases as p = po(r/rs)”2, and 3) terminal shocks in the stellar winds from massive stars into
a uniform ISM. The readers may refer to Chevalier (1976) and Ryu and Vishniac (1991) for the similarity solutions of
spherical shocks for a wide range of energy sources at the center and background density distributions.

We approximate the evolution of a SNR, with two phases: the free expansion phase and the Sedov phase. We assume
that the Sedov phase begins at t, when the swept up mass equals to the ejected mass. For SNRs in a uniform density
with an explosion energy, E,, ejecta mass, M,;, and ISM density, p,, this assumption (e.g. 47r3p,/3 = M.;) determines
the normalization constants which converts the physical flow variables, 7, u, and t to dimensionless quantities, 7 = r/Tn,
#t = u/uy, and { = t/t,. They are

3M.; 13
- (47rpa) (3.1a)
- PoTh 172 3.1b
tﬂ (Eoes) 1 ( * )

where £, = 1.15167. It should be obvious that u, = Tn/tn. Then the velocity and radius of the shock have the following
approzimate, dimensionless, similarity solutions: for t<1
~ 12, : 3.2
o~ (g (3.20)
and forf > 1 0
55-3/5, 7y ~ 1215 (3.2b)

Here we approximate E, ~ M.ju2/2 to find the shock velocity in the free expansion phase. Only in the limit of > 1, for
the strong blast wave, the expressions in Eq. (3.2b) become exact.

For SNRs in the inverse-square density distribution we parameterize the background density distribution in terms of
a steady stellar wind from the progenitor with a constant mass loss-rate, M,, and a constant velocity, u,, as in Jones
and Kang (1992), Then the normalization constants can be specified from the condition that Myt [ty = M, att =1,
according to

Me' w
r, = ]é: ’ (3.3a)
_ Mejr?l 1/2

where ¢ = 3/2m, E, is the explosion energy, and M.; is the ejected mass. The similarly solutions for this model can be

approximated as
1

) (3.4a)

s ~ (

for t < 1, and
2.
g~ B (3.4b)

for i > 1. Here we also use the approximate relation, E, ~ M,ju?/2 fort < 1.

The terminal shock of the stellar winds is different from the SNR shocks in several ways. It is a reverse shock facing
toward the star. The upstream side of this shock is the wind, while the downstream side is the shocked wind. There is a
contact discontinuity between the terminal shock and the forward shock. For the stellar winds expanding into a uniform
ISM, p,, we assume the wind blows out from a shell with a constant speed, v, and a constant mass loss rate M,’” Then
the density inside the wind decreases with r as p, = M/, /(47r%v,). One way to specify the normalization constants is to
find the radius of the shell where p,, equals the ISM density, p,, that is,

My 12
AT poty

rp = ( , (3.54a)
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t, = (3.5b)
Vy

The wind density p,, at the contact discontinuity between the wind and the ISM is greater than p, for t < ¢,,. As discussed
in Falle (1975), the evolution in such configuration is rather uncertain due to the Rayleigh-Taylor instability. Thus we
assume the stellar wind starts from a sphere of r = r,, since the acceleration before ¢, is not important once the age of the
wind becomes much larger than t,. According to Falle (1975), the velocity of the terminal shock is u, ~ vy /3 initially at
rn. For t > t,,, the radius of the terminal shock increases as r, o 12/ 5 while the radii of the contact discontinuity and the
forward shock increase as r o t3/5. In the present paper we concentrate on the terminal shock only because the forward

shock is much weaker and, so, less efficient in accelerating particle diffusively. According to Weaver et al. (1977)
Y
Ty ~ 0.743(%4&)3/ 10,,1/1042/5 (3.6)

for £ > 1. Thus the dimensionless radius and velocity can be expressed by
7y ~ 1.5881%/°,
iy ~ 0.63513/5, (3.7)

for t > 1. Since u, is the velocity of the terminal shock in the rest frame of the star, the velocity relative to the unshocked
wind (upstream region), u;, = vy — u,, should be used to calculate the acceleration time scale. Since the detail behavior
of u} at the early stage is not so important, we take the following approximation :

ul ~2/3 (3.8a)

for { < 3, and
@ ~1—0.63503/5, (3.8b)

for £ > 3. Here the relation @, = 1/3 at { = 0 is used. The value of u, in Eq. (3.8b) is equal to 2/3 at { ~ 3.

(b) Distribution Function

In our simplified model we take the momentum distribution function of the particles to be a power law extending from
a lower-bound momentum, p, to an upper-bound momentum, p;,

f=for™t, (3.9)

for pp < p < p1. We assume ¢ = 4 as expected in a strong unmodified shock. This turns out to be a pretty good
approximation since, in the spherical shocks considered here, most of the acceleration occurs in the early phase of the
shock when the compression ratio is still ¢ = 4 (LC). The upper-bound momentum, p; can be limited by either the finite
lifetime of the shock or the curvature effect. It is obvious that the maximum energy gained depends on the ratio of the age
of the shock to the acceleration time scale. For the spherical shocks, highly energetic particles cannot be confined by the
shock, when the energy is high enough so that their diffusion lengths become comparable to the radius of curvature of the
shock front (Blandford & Eichler 1987). In a typical SNR the maximum momentum is likely to be set by the age of the
remnants, while it is limited by the curvature of the terminal shock in the stellar winds (LC). The distribution function
steepens rather rapidly for p > p;, especially for the Bohm diffusion model considered here (see, for example, Kang &
Jones 1991), so that the particles of p > p; can be safely ignored. Here we assume that the injected particle population is
dominant over the pre-existing galactic CRs whose distribution function f(p) is approximately proportional to p~ 43,

(¢) Maximum Momentum

First we estimate the maximum momentum, p;, limited by the age of the shock, using the test particle theory in which
it is assumed that the CR pressure does not influence the dynamics of the shock. The mean time interval for a particle to
be accelerated to some momentum p + dp from an initial momentum p can be written by (LC; Drury 1983),

dt=—3 (”_‘ + fl) d (3.10)

U — Uz \uU1 U2/ p
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Here the subscripts 1 and 2 refer to the upstream and downstream values of the diffusion coefficient and the velocity as
measured in the shock frame. Assuming k; = k2 = k(p) and a compression ratio, ¢ = u;/u3, Eq. (3.10) becomes

af%dpz u, (t)%dt, (3.11)

where u,(t) is the shock velocity and & = 3¢(c + 1)/(c — 1). By the same reason as for the power law index ¢, we
can use ¢ = 4 (¢ = 20) without sacrificing much accuracy. The maximum momentum, pia that a particle injected
with the momentum pg at ¢o can achieve during the lifetime of the shock can be found by integrating Eq. (3.11) if the
time dependence of the shock velocity and the momentum dependence of the diffusion coefficients are given assuming the
diffusion coefficient depends only on the particle momentum.
If we assume a momentum-dependent diffusion coefficient model in which the CRs scattering mean free path is propor-
tional to the Larmour radius (e.g., Bohm diffusion), then the non-dimensional diffusion coefficient is given by
() = F1 e 3.12
k(p) = Ry Tt (3.12)
6 3.13 x 10*2cm?!
B Kn ’
where the magnetic field strength B is expressed in units of 4G and x, = 2 /t, is the normalization constant for the
diffusion coefficient. & is is a constant which is dependent upon details of the microphysics related to the scattering
process. For Bohm diffusion coefficient in quasi-parallel shocks the value of 6 becomes unity, while it can be less than one
for quasi-perpendicular shocks (Jokipii, 1992). The magnetic field strength in ISM could be B ~ 1 — 10uG. Thus we treat
% as a free parameter to be varied instead of changing each of them separately.
Now we can numerically calculate p;, as a function of ¢ using the similarity solutions given by Eq.’s (3.2), (3.4) and
(3.8) and the diffusion coefficient in Eq. (3.12). The approximate behaviors, however, can be easily found in the limit of
Pia > 11

(3.13)

K1

- 1 ~_ : '
(R1P1a)su ~ %(1 —t715), (3.14a)
- 1
(R1p1a)si ~ E(fl/a - 1), (3.14b)
- 1.
(K1p1a)w ~ '2—Ot, (3.14¢)

for SNRs in a uniform density, SNRs in the inverse-square density, and the stellar winds, respectively. One should note
that &1p1a is a function of only the dimensionless time i, so that the above relations can be applied to a wide range of
physical models of these spherical shocks and p14 (in units of mc) depends on 6, B, and physical dimension of the shock
(e.g. kn) through &;. In particular, for SNRs in a uniform density ISM, &1p;, has a maximum value of 1/25, so the firm

maximum momentum of this case is
BE?
6M eljlspé/s’

(Pra)su = 7.3 x 10* (3.15)
where B is expressed in units of 4G, E, in units of 105lergs, M,; in units of 10Mg, and p, in units of 2.4 x 10~2"gem ™3,
For typical Type II SNRs whose explosion parameters are similar to these fiducial values, the maximum energy of the
protons is about 3 x 10°GeV if § ~ 1 and B ~ 3. ‘

Secondly, we estimate the maximum momentum set by the curvature of the shock, pi, by finding the momentum which
gives a diffusion length similar to the radius of the shock, that is,

Rpwr) _ (3.16)

Us

Since only highly energetic particles (p 3> 1) can escape from the shock, we can use &{p) = K1p. In the limit of t>1,
then, we can estimate p;, from

- 2.
(Klplr)Su ~ gt 1/5, (3.17(1)
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N 2
(R1p1r)si ~ 551/3, (3.170)

(R1p1)w ~ 1.5888%/5, ' (3.17¢)

It should be remembered that the radius and the velocity given in Eq.’s (3.7) and (3.8b), respectively, are used for the
stellar wind model. Here &1p;, is also only a function of #, so the same statement regarding the dependence of physical
models regarding p;,; can be made for p;, also. The maximum momentum p;, then, should be the minimum of p;, and

Pir.-

(d) Closure Parameters

The mean diffusion coefficient can be estimated according to Eq. (2.3) with the assumed distribution function in Eq. (3.9)
by taking a small pg and célculating p1 as described in the previous section. Typically we take pg ~ 10~3, but the results
are insensitive to this value as long as pg <« 1. Similarly, in the limit p; >> 1 the dimensionless mean diffusion coefficient
can be approximated as (k) ~ &1p;/Inp;. With this last form Eq.’s (3.14) and (3.17) give the analytic expressions for (&)
for each spherical shock. Here we also note that (k) is only weakly dependent on k; through Inp;.

The pressure and energy of CRs can also be found according to Eq.’s (2.5) and (2.6) by the same procedure as the mean
diffusion coefficient. Then the ratio of P, to E. should give the specific heat ratio for CRs as in Eq. (2.4).

We have also calculated the ratio, f.sc, of the CR energy corrected for escaping energetic particles due to the curvature
effect to the CR energy without considering that effect as the following:

fo o [ (VPP +1-1)f dp
esc — P1a .
po (VPP +1-1)f dp

The denominator of this equation represents the CR, energy accelerated during the lifetime of the shock, while the numerator
represents the CR energy accelerated either during the lifetime of the shock or until the curvature effect sets in. Since
one-dimensional spherical simulations of stellar winds using the two-fluid method cannot treat the curvature effect, the
CR energy gain in such simulations corresponds to the CR energy term in the numerator. Thus f.,. may provide a way
to estimate roughly the CR energy gain when the escaping particles are correctly counted for.

(3.18)

IV. RESULTS

As mentioned in the previous section, our results can be applied to a wide range of physical model parameters for
SNRs and stellar winds with the appropriate normalization. In order to discuss the results quantatitively, however, we
take a standard model for each kind of spherical shock. For SNRs in a uniform ISM, E, = 10%lergs, M.; = 10Mp, and
po = 7.0 x 10~2"gem™3, so r, = 28.5pc, t, = 4.3 x 10%yrs, and K, = 5.73 x 102%cm?s~!. For SNRs in the inverse-square
density distribution which originates from a steady stellar wind, E, = 10%%ergs, M,; = 1My, M,, = 10~5Mgyr~!, and
uy = 10kms~!, so r, = 1.02 pc, t, = 57.7 yrs, and &, = 5.46 x 1027cm?s~!. For the terminal shocks of the stellar
winds, M), = 10~Mgyr~!, vy, = 2 x 103%km s~!, and p, = 2.34 x 10~2%g cm~3, so r, = 0.11pc, t, = 52.0yrs, and
kn = 6.57 x 10%%cm? s~1. We take (§/B) = 0.2, 2, and 20 for the diffusion coefficient in Eq. (3.11).

In Fig. 1 we have shown the maximum momenta p;, (solid lines) and p;, (dashed lines) calculated numerically from
Eq.’s (3.11) and (3.16) for each standard models with (§/B) = 0.2. For models with other physical parameters, both p;,
and p;, should scale with k,. As we have shown in the previous section, the different time behaviors in the maximum-
momentum among the three dynamical models coine about because of the different time dependence in the shock velocity.
As seen in Eq. (3.15), for example, p;, for the SNRs in a uniform density distribution decrease with time, because the
shock slows down faster compared to the increase of the shock radius. In principle the maximum momentum is determined
from the age of the SNRs and the stellar winds which depend on the physical parameters. For the SNRs, however, most of
acceleration takes place in the early phase (f. <10), and it is insensitive to when the Sedov phase terminates or the radiatively
cooling phase sets in-and so on. For our standard models, p; ~ 10° can be achieved in the SNRs in a uniform ISM. This
translates into the maximum energy of pyc ~ 105GeV for the cosmic ray protons which constitute most of the galactic
CRs. This energy is much lower than the break in the power-law spectrum of the galactic CRs around pc ~ 5 x 106GeV.
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Fig. 1. The maximum momentum set by the age of the shocks, P14 (solid lines), and by the curvature of the shocks, p1, (dashed lines) for
SNRs in a uniform density model (top panel), SNRs in the inverse-square density model (middle panel), and the terminal shock in stellar winds
(bottom panel). See the text for the normalization constants for each model.

(Fichtel & Linsley 1986). For the SNRs in the inverse-square density distribution, the maximum momentum could be
somewhat higher than for the SNRs in a uniform ISM depending on the ages, since p, increase with time. This indicates
that the SNRs in a medium where the density decrease with the distance from the explosion center faster than r~2 could
accelerate the CRs to higher energy. For the terminal shocks of stellar winds, the maximum age could be determined from
the stellar mass and the mass loss rate. For our standard model in which M,, = 10~5Mgyr~!, the age could be order of
~ 10%yrs. Thus the maximum momentum is similar to that of our standard model of SNRs in the inverse-square density
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Fig. 2. The mean diffusion coefficient in units of K5, for each shock model. The solid, dashed, dot-dashed lines represent the models with
(6/B) = 0.2, 2, and 20, respectively.

distribution or could be a little bit higher for larger stellar mass. Even though the stellar winds from massive stars are less
energetic than SNRs in terms of energy budget, they could make a significant contribution to very energetic particles as
first suggested by LC.

The dimensionless mean diffusion coefficients, (%) are calculated for (6/B) = 0.2 (solid lines), 2 (dashed lines), and 20
(dot-dashed lines), and plotted in Fig. 2. As mentioned in §3.4, (k) is only weakly dependent upon &; through pi, so
the differences among the lines for different values of (§/B) are small. Similarly, the specific heat ratios are plotted in
Fig. 3. Like the maximum momentum pia, Ye decrease close to 4/3 before 1<10, since the particles are accelerated to
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Fig. 3. The specific heat ratio for cosmic rays for each shock model. The lines are the same as in Fig. 2

the relativistic energy already in the early phase. Fig. 2 and 3 should provide a simple time-dependent model for closure
parameters for two-fluid calculations of these spherical shocks. It should be noted that the dimensionless mean diffusion
coefficient is roughly independent of the details of the scattering processes (e.g. §) and physical models of the shock (e.g.
B and «,,).

Finally, in Fig. 4 we have shown the ‘retained’ fraction of energy which has been corrected for the escaping energetic
particles due to the curvature in the stellar wind models (see Eq. [3.18]). For our standard model, less than 20 % energy
is lost for (6/B) < 20. This is because most of the energy is carried by the lower energy particle which remains near the
shock, in other words, the number of escaping high energy particles is much less than number of lower energy particles.
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Fig. 4. The estimated fraction of the CR energy corrected for the escaping energetic particles for the stellar wind shock model. The lines

are the same as in Fig. 2

V. DISCUSSION

By adopting the simple assumptions in the test-particle theory, we have presented a time dependent model of the
closure parameters, the specific heat ratio for CRs and the mean diffusion coefficient, which can be used in the two-fluid
calculations of SNRs in a uniform density or the inverse-square density distribution and the terminal shocks of the stellar
winds from massive stars.

We found that the time evolution of the mean diffusion coefficient in our model is insensitive to the details of the
scattering physics and the size of model parameters. The specific heat ratio for CRs can change somewhat significantly
with those details only in the early free expansion phase when the particle changes from being nonrelativistic to being
relativistic. Both closure parameters change more rapidly in the free expansion phase than in the Sedov phase. We can
see intuitively that what matters most in determining the evolutions of the closure parameters is the evolution of particle
distribution function around the transition from being non-relativistic to being relativistic. Thus the closure parameters
changes most during this transition which happens in the free-expansion phase of SNRs or in the early age of the stellar
winds. We note the wide dynamic range of the mean diffusion coefficient during this transition (at least order of 100) may
bring about a technical problem in the two-fluid numerical simulations, since the spatial resolution of such simulations
should be a small fraction of the diffusion length (Jones and Kang 1990) unless special techniques such as an expanding
grid or an adaptive grid are used.

The Sedov phase plays a more important role in terms of total energy accelerated, since the CRs accelerated in the free
expansion phase lose their energy through adiabatic cooling in later phase. Thus some of the previous authors ignored the
evolutions of CRs in the free expansion phase and started their calculation from the Sedov phase (Jones and Kang 1990,
1992, Kang and Jones 1991) with the various values of the closure parameters. But the evolution of particle distribution
in the free expansion phase should determine the initial closure parameters for the Sedov phase and so it should bear its
own significance. Dorfi (1991) started his simulation from the initial explosion of the SNRs in a uniform ISM adopting
the time-dependent model of the closure parameters of Drury, Markiewicz & Volk (1989) in which similar assumptions
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regarding the test-particle distribution and the Bohm diffusion model as ours were made. According to his calculations,
10-30% of the initial explosion energy can be converted into the CRs, and the CR energy increases substantially and the
specific heat ratio for CRs becomes 4/3 during the free-expansion phase. On the other hand, Jones and Kang (1992)
started the calculations from the Sedov phase, but they kept v, at 5/3 for a few dynamical times, so that the CR pressure
could build up significantly early in the Sedov phase. They came to the same conclusion as Dorfi (1991) regarding the
energy gain in the CRs. In fact, all previous SNR simulations mentioned in §I indicated that it is possible to channel
of order 10 % of the initial explosion energy into the galactic CRs despite the differences in the various models. This is
because the key to determining the ultimate CR energy gain is the existence of substantial CR pressure early in the Sedov
phase, which can be achieved if 7. is close to 5/3 during the initial acceleration stage, and all previous SNR calculations
have at least one model which satisfies such condition.

The maximum momentum for our standard models of the SNRs and the stellar winds are pic ~ 10°GeV. In turns
our it is not as high as pc ~ 5 x 10°GeV above which the galactic CR spectrum steepens (Fichtel & Linsley 1986). The
gap between these two energies seems to be rather too big to be explained by simply taking a slightly, different physical
parameters of these shocks. We point out, however, the SNRs in a medium where the gas density decrease more rapidly
than r~=2 where r is the distance from the supernova could accelerate the particles to higher energy and, therefore, may be
able to explain the observed power-law distribution of the galactic cosmic rays if such density distribution is ubiquitous in
the interstellar medium. It is also possible to narrow the gap if the drift acceleration in quasi-perpendicular shocks plays
an important role in determining the diffusion processes (Jokipii, 1992).

Finally we estimated that the CR energy loss due to the escaping energetic particles should be less than ~ 10% of the
total CR energy accelerated in the terminal shocks in the stellar winds, because the number fraction of energetic particles
is small. Escape of the energetic particles is not a significant problem in the SNR models considered here.
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