• Title/Summary/Keyword: Density dependence

Search Result 578, Processing Time 0.027 seconds

The Dependence of CT Scanning Parameters on CT Number to Physical Density Conversion for CT Image Based Radiation Treatment Planning System (CT 영상기반 방사선치료계획시스템을 위한 CT수 대 물리적 밀도 변환에 관한 CT 스캐닝 매개변수의 의존성)

  • Baek, Min Gyu;Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.501-508
    • /
    • 2017
  • The dependence of CT scanning parameters on the CT number to physical density conversion from the CT image of CT and CBCT electron density phantom acquired by the CT scanner using in radiotherapy were analyzed by experiment. The CT numbers were independent of the tube current product exposure time, slice thickness, filter of image reconstruction, field of view and volume of phantom. But the CT numbers were dependent on the tube voltage and cross section of phantom. As a result, for physical density range above 0, the maximum CT number difference observed at the tube voltage between 90 and 120 kVp was 27%, and the maximum CT number difference observed between CT body and head electron density phantom was 15%.

Angular dependence of critical current of SmBCO coated conductor fabricated by co-evaporation method

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Song, Kyu-Jeong;Ko, Rock-Kil;Ha, Dong-Woo;Kim, Tae-Hyung;Youm, Do-Jun;Lee, Nam-Jin;Moon, Seung-Hyun;Yoo, Sang-Im;Park, Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.16-19
    • /
    • 2008
  • Angular dependence of critical current density of SmBCO coated conductor fabricated by co-evaporation method was investigated. For comparison, three samples were fabricated by a co-evaporation method and one sample was fabricated by a pulsed laser deposition process. The deposition system, named EDDC (Evaporation using Drum in Dual Chambers), is a batch type co-evaporation system, which is composed of reaction chamber and evaporation chamber. The normalized critical current density ratio ($I_c/I_c$(H//ab-plane)) of EDDC-SmBCO samples was found to be higher than that of PLD-YBCO sample in the whole range of angle. While the EDDC-SmBCO samples evidently had a peak at the angle of H//c-axis in the plot of the angular dependence of critical current, the normalized critical current of PLD-YBCO sample decreased monotonically without any peak as angle increased. The field dependence of critical current under the magnetic field parallel to the normal direction of those samples showed similar aspect in the range of $0\;G{\sim}5000\;G$.

Serum Lipid Profiles after Abstinence in Korean Male Patients With Alcohol Dependence (남성 알코올 의존 환자들에서 금주 치료 후의 혈청 지질 농도 변화)

  • Lee, Seoung-Ho;Park, Woong-Sub
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • Objectives : The treatment of alcohol dependence requires maintaining abstinence. However, some previous studies have suggested that the abstinence may increase the cardiovascular risk in patients with alcohol dependence. The aim of the present study was to examine the effect of alcohol abstinence on lipid profile in Korean male patients with alcohol dependence. Methods : Twenty-eight male patients with alcohol dependence were recruited from a psychiatric unit located at Gangneung Dongin Hospital. Lipid profiles of the patients were compared before and after a month of alcohol abstinence. Results : After abstinence of 1 month, high-density lipoprotein(HDL) cholesterol and triglyceride(TG) level was significantly decreased(p=0.000; p=0.0086, respectively). Low-density lipoprotein(LDL) cholesterol level showed a tendency to increase(p=0.066). Total cholesterol level also showed a tendency to decrease(p=0.074). Conclusions : These results show that acute abstinence of alcohol might paradoxically aggravate dyslipidemia in patients with alcohol dependence. Thus, this study shows that more concern associated with cardiovascular risk is needed during short-term abstinence period.

  • PDF

Environmental Dependence of Star Formation and HI Gas Fraction of Galaxies in the SDSS DR8

  • Jung, Su-Jin;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2014
  • We examine the effect of environment on star formation activity of a sample of galaxy group catalogue given in Tempel et al.(2012) constructed from the Sloan Digital Sky Survey Data Release 8. In order to compare galaxies in different environment, we classify galaxies into two groups: galaxies in low density environment and galaxies in high density environment. After matching colors and apparent magnitudes of the galaxies, we are left with 5912 galaxies in each of the environment category. The fraction of star-forming galaxies in low-density environment is ~34%, higher than ~15% in high-density environment. Star-forming galaxies in low density environment have a higher average SFR value than those in high density environment. The bulge-to-disk ratio for galaxies in two different environment shows bimodal distribution. Regardless of the environment, we find galaxies with high star formation rate despite their red (g-r) color, for which the origin enhancing their star formation rate is investigated.

  • PDF

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.3
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

Effect of Density-of-States (DOS) Parameters on the N-channel SLS Poly-Si TFT Characteristics

  • Ryu, Myung-Kwan;Kim, Eok-Su;Son, Gon;Lee, Jung-Yeal
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.718-722
    • /
    • 2006
  • The dependence of n-channel 2 shot SLS poly-Si TFT characteristics on the DOS (density of states) parameters was investigated by using a device simulation. Device performances were most sensitive to the DOS of poly-Si/gate insulator (GI) interface and poly-Si active layer. Deep level states at the poly-Si/GI interfaces strongly affect the subthreshold slope.

  • PDF

A Study on Thickness and Temperature Dependence of Dielectric Breakdown in Polyethylene (폴리에틸렌의 절연파괴와 그의 온도 및 두께의존성)

  • Kim, Jeom-Sik;Lee, Jong-Bum;Jung, Woo-Kyo;Kim, Mi-Hang;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1388-1390
    • /
    • 1995
  • The characteristic of dielectric breakdown in solid insulating material dominates the reliability and safety of power equipment and affects directly to its life. In this point of view, the thickness and temperature dependence of dielectric breakdown strength and mechanism of dielectric breakdown in low density polyethylene which has been employed widely as insulating material have been technically reviewed by examinations of thermal property. The dielectric breakdown strength depending on its thickness was measured 2.6[MV/cm] at the thickness of 20[${\mu}m$] and 1.9[MV/cm] at the thickness of 75[${\mu}m$] based on ambient temperature of 30[$^{\circ}C$]. It is shown the temperature dependence that dielectric breakdown strength decreases in linear as the thickness increases. The dielectric breakdown strength depending on temperature was measured 2.6[MV/cm] at the temperature of 30[$^{\circ}C$], 1.6[MV/cm] at 60[$^{\circ}C$] and 1.3[MV/cm] at 90[$^{\circ}C$] based on the thickness of 20[${\mu}m$]. As the ambient temperature increases, the temperature dependence is shown that a very large drop is occurred up to temperature of 60[$^{\circ}C$] and a very small drop is discovered over 60[$^{\circ}C$].

  • PDF

Performance Analysis of SOFC/MGT Hybrid System

  • Kim, Jae-Hwan;Suzuki, Kenjiro
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.703-707
    • /
    • 2001
  • A performance analysis of a SOFC/MGT hybrid system has been carried out for concept design. Thermo-dynamic models for each component being able to describe electrochemical characteristics and heat and mate-rial balance are proposed. Estimated is the power capacity of a SOFC suitable for the hybrid operation with a 5kW class MGT. Effects of current density and operating pressure are also investigated. Electric efficiency showed weak dependence on operating pressure and current density. It is desirable that the SOFC operates at high current density in manufacturing cost's point of view though operating with high current density slightly decreases the electric efficiency find specific power.

  • PDF

Sputtering of Multifunctional AlN Passivation Layer for Thermal Inkjet Printhead

  • Park, Min-Ho;Kim, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.50-50
    • /
    • 2011
  • The aluminum nitride films were prepared by RF magnetron sputtering using an AlN ceramic target. The crystallinity, grain size, Al-N bonding and thermal conductivity were investigated in dependence on the plasma power densities (4.93, 7.40, 9.87 W/$cm^2$) during sputtering. High thermal conductivity is important properties of A1N passivation layer for functioning properly in thermal inkjet printhead. The crytallinity, grain size, Al-N bonding formation and chemical composition were observed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The AlN thin film was changed from amorphous to crystalline as the power density was increased, and the largest grain size appeared at medium power density. The near stoichiometry Al-N bonding ratio was acquired at medium power density. So, we know that the AlN thin film had better thermal conductivity with crystalline phase and near stoichometry Al-N bonding ratio at 7.40 W/$cm^2$ power density.

  • PDF