• 제목/요약/키워드: Dense net

검색결과 155건 처리시간 0.023초

Multi-class Classification of Histopathology Images using Fine-Tuning Techniques of Transfer Learning

  • Ikromjanov, Kobiljon;Bhattacharjee, Subrata;Hwang, Yeong-Byn;Kim, Hee-Cheol;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제24권7호
    • /
    • pp.849-859
    • /
    • 2021
  • Prostate cancer (PCa) is a fatal disease that occurs in men. In general, PCa cells are found in the prostate gland. Early diagnosis is the key to prevent the spreading of cancers to other parts of the body. In this case, deep learning-based systems can detect and distinguish histological patterns in microscopy images. The histological grades used for the analysis were benign, grade 3, grade 4, and grade 5. In this study, we attempt to use transfer learning and fine-tuning methods as well as different model architectures to develop and compare the models. We implemented MobileNet, ResNet50, and DenseNet121 models and used three different strategies of freezing layers techniques of fine-tuning, to get various pre-trained weights to improve accuracy. Finally, transfer learning using MobileNet with the half-layer frozen showed the best results among the nine models, and 90% accuracy was obtained on the test data set.

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.

Predicting Brain Tumor Using Transfer Learning

  • Mustafa Abdul Salam;Sanaa Taha;Sameh Alahmady;Alwan Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.73-88
    • /
    • 2023
  • Brain tumors can also be an abnormal collection or accumulation of cells in the brain that can be life-threatening due to their ability to invade and metastasize to nearby tissues. Accurate diagnosis is critical to the success of treatment planning, and resonant imaging is the primary diagnostic imaging method used to diagnose brain tumors and their extent. Deep learning methods for computer vision applications have shown significant improvements in recent years, primarily due to the undeniable fact that there is a large amount of data on the market to teach models. Therefore, improvements within the model architecture perform better approximations in the monitored configuration. Tumor classification using these deep learning techniques has made great strides by providing reliable, annotated open data sets. Reduce computational effort and learn specific spatial and temporal relationships. This white paper describes transfer models such as the MobileNet model, VGG19 model, InceptionResNetV2 model, Inception model, and DenseNet201 model. The model uses three different optimizers, Adam, SGD, and RMSprop. Finally, the pre-trained MobileNet with RMSprop optimizer is the best model in this paper, with 0.995 accuracies, 0.99 sensitivity, and 1.00 specificity, while at the same time having the lowest computational cost.

Analysis of Energy-Efficiency in Ultra-Dense Networks: Determining FAP-to-UE Ratio via Stochastic Geometry

  • Zhang, HongTao;Yang, ZiHua;Ye, Yunfan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5400-5418
    • /
    • 2016
  • Femtocells are envisioned as a key solution to embrace the ever-increasing high data rate and thus are extensively deployed. However, the dense and random deployments of femtocell access points (FAPs) induce severe intercell inference that in turn may degrade the performance of spectral efficiency. Hence, unrestrained proliferation of FAPs may not acquire a net throughput gain. Besides, given that numerous FAPs deployed in ultra-dense networks (UDNs) lead to significant energy consumption, the amount of FAPs deployed is worthy of more considerations. Nevertheless, little existing works present an analytical result regarding the optimal FAP density for a given User Equipment (UE) density. This paper explores the realistic scenario of randomly distributed FAPs in UDN and derives the coverage probability via Stochastic Geometry. From the analytical results, coverage probability is strictly increasing as the FAP-to-UE ratio increases, yet the growing rate of coverage probability decreases as the ratio grows. Therefore, we can consider a specific FAP-to-UE ratio as the point where further increasing the ratio is not cost-effective with regards to the requirements of communication systems. To reach the optimal FAP density, we can deploy FAPs in line with peak traffic and randomly switch off FAPs to keep the optimal ratio during off-peak hours. Furthermore, considering the unbalanced nature of traffic demands in the temporal and spatial domain, dynamically and carefully choosing the locations of active FAPs would provide advantages over randomization. Besides, with a huge FAP density in UDN, we have more potential choices for the locations of active FAPs and this adds to the demand for a strategic sleeping policy.

3GPP 자율적 네트워크 최적화 기술 (Technology in 3GPP Self-Optimizing Network)

  • 신연승;나지현
    • 전자통신동향분석
    • /
    • 제29권6호
    • /
    • pp.71-81
    • /
    • 2014
  • 5G 무선통신시스템은 동일한 영역에서 스펙트럼 사용 효율성을 개선하기 위해 매크로셀과 소형셀이 공존하는 이종 네트워크(HetNet: Heterogeneous Network) 형태로 진화하고 있으며, 급증하는 모바일 트래픽을 효율적으로 처리하기 위해 소형셀들을 고밀도 네트워크(High dense network)로 구축하는 방안이 연구되고 있다. 매크로셀과 고밀도 소형셀들이 중첩되어 구축되는 HetNet 기반 셀룰러 네트워크에서 소형셀 시스템의 구성과 파라미터 최적화를 통한 성능 유지를 운영자가 수동으로 조정하는 것은 한계가 있으므로 네트워크 환경변화에 따라 시스템에서 자율적으로 파라미터를 조정하여 시스템 성능을 유지하는 기술이 요구되고 있다. 본고에서는 시스템 운용 중 자율적인 최적화를 통해 시스템 성능을 최적으로 유지하고 유지비용을 최소화하는 3GPP 자율적 네트워크 최적화 기술을 소개한다.

  • PDF

코로나바이러스 감염증19 데이터베이스에 기반을 둔 인공신경망 모델의 특성 평가 (Evaluation of Deep-Learning Feature Based COVID-19 Classifier in Various Neural Network)

  • 홍준용;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.397-404
    • /
    • 2020
  • Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.

Integrity Assessment and Verification Procedure of Angle-only Data for Low Earth Orbit Space Objects with Optical Wide-field PatroL-Network (OWL-Net)

  • Choi, Jin;Jo, Jung Hyun;Kim, Sooyoung;Yim, Hong-Suh;Choi, Eun-Jung;Roh, Dong-Goo;Kim, Myung-Jin;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권1호
    • /
    • pp.35-43
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a global optical network for Space Situational Awareness in Korea. The primary operational goal of the OWL-Net is to track Low Earth Orbit (LEO) satellites operated by Korea and to monitor the Geostationary Earth Orbit (GEO) region near the Korean peninsula. To obtain dense measurements on LEO tracking, the chopper system was adopted in the OWL-Net's back-end system. Dozens of angle-only measurements can be obtained for a single shot with the observation mode for LEO tracking. In previous work, the reduction process of the LEO tracking data was presented, along with the mechanical specification of the back-end system of the OWL-Net. In this research, we describe an integrity assessment method of time-position matching and verification of results from real observations of LEO satellites. The change rate of the angle of each streak in the shot was checked to assess the results of the matching process. The time error due to the chopper rotation motion was corrected after re-matching of time and position. The corrected measurements were compared with the simulated observation data, which were taken from the Consolidated Prediction File from the International Laser Ranging Service. The comparison results are presented in the In-track and Cross-track frame.

한국산 낙지 (Octopus minor) 상완신경절의 미세구조 (Ultrastructure of Brachial Ganglion in Korean Octopus, Octopus minor)

  • 장남섭
    • Applied Microscopy
    • /
    • 제30권3호
    • /
    • pp.265-272
    • /
    • 2000
  • 낙지 Octopus minor의 상완 신경절을 광학현미경과 전자현미경을 통해 관찰한 결과 다음과 같은 결론을 얻었다. 낙지의 상완신경절은 각각의 흡반 밑에서 둥근 형태로 관찰되었는데 그들의 크기는 흡반의 크기에 비례하였다. 둥근 형태의 상완신경절은 피질부와 수질부 두 부분으로 구분되었던 바, 피질부에서는 신경세포의 집단이, 수질부에는 신경망이 위치해 있었다. 신경세포의 집단에서는 3종류(소, 중, 대형)의 신경세포들이 관찰되었는데 소신경세포는 직경이 $0.9{\mu}m$정도인 둥근 형태의 작은 세포인데 비해 중신경세포는 직경 $1.6\times1.3{\mu}m$정도인 타원형세포였다. 대신경세포는 직경이 $2.8{\mu}m$정도 크기의 난원형의 큰 세포로 확인되었고 이들 3종류의 세포들은 모두 전자밀도가 낮아서 밝게 관찰되었으며 세포소기관의 발달은 미진하였다. 또한 중신경세포인 경우에는 $0.6\times0.4{\mu}m$정도 크기의 전자밀도가 중등도인 방추형 신경교세포에 의해 둘러싸여 있었다. 수질부의 신경망에서는 다양한 크기의 수상돌기와 축색돌기들이 복잡한 그물형태를 하고 있었다. 이들은 돌기내에서 4종류의 화학연접소포 (chemical synaptic vesicle)들을 소지하고 있었는데, 전자밀도가 매우 높고 직경이 100 nm 정도인 electron-dense synaptic vesicle과 전자밀도가 중등도이며 직경이 90nm 정도인 median electron-dense synaptic vesicle 그리고 중앙에 전자밀도가 높은 둥근 핵을 포함하는 직경 90nm정도의 electron-dense cored synaptic vesicle등이 관찰되었다. 그러나 전자밀도가 투명한 연접소포(electron-lucent synaptic vesicle)는 직경이 50nm정도로 가장 작은 형태를 하고 있었다.

  • PDF

Improved Classification of Cancerous Histopathology Images using Color Channel Separation and Deep Learning

  • Gupta, Rachit Kumar;Manhas, Jatinder
    • Journal of Multimedia Information System
    • /
    • 제8권3호
    • /
    • pp.175-182
    • /
    • 2021
  • Oral cancer is ranked second most diagnosed cancer among Indian population and ranked sixth all around the world. Oral cancer is one of the deadliest cancers with high mortality rate and very less 5-year survival rates even after treatment. It becomes necessary to detect oral malignancies as early as possible so that timely treatment may be given to patient and increase the survival chances. In recent years deep learning based frameworks have been proposed by many researchers that can detect malignancies from medical images. In this paper we have proposed a deep learning-based framework which detects oral cancer from histopathology images very efficiently. We have designed our model to split the color channels and extract deep features from these individual channels rather than single combined channel with the help of Efficient NET B3. These features from different channels are fused by using feature fusion module designed as a layer and placed before dense layers of Efficient NET. The experiments were performed on our own dataset collected from hospitals. We also performed experiments of BreakHis, and ICML datasets to evaluate our model. The results produced by our model are very good as compared to previously reported results.