• Title/Summary/Keyword: Dense net

Search Result 155, Processing Time 0.028 seconds

Study the mutual robustness between parameter and accuracy in CNNs and developed an Automated Parameter Bit Operation Framework (CNN 의 파라미터와 정확도간 상호 강인성 연구 및 파라미터 비트 연산 자동화 프레임워크 개발)

  • Dong-In Lee;Jung-Heon Kim;Seung-Ho Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.451-452
    • /
    • 2023
  • 최근 CNN 이 다양한 산업에 확산되고 있으며, IoT 기기 및 엣지 컴퓨팅에 적합한 경량 모델에 대한 연구가 급증하고 있다. 본 논문에서는 CNN 모델의 파라미터 비트 연산을 위한 자동화 프레임워크를 제안하고, 파라미터 비트와 모델 정확도 사이의 관계를 실험 및 연구한다. 제안된 프레임워크는 하위 n- bit 를 0 으로 설정하여 정보 손실 발생시킴으로써 ImageNet 데이터셋으로 사전 학습된 CNN 모델의 파라미터와 정확도의 강인성을 비트 단위로 체계적으로 실험할 수 있다. 우리는 비트 연산을 수행한 파라미터로 InceptionV3, InceptionResnetV2, ResNet50, Xception, DenseNet121, MobileNetV1, MobileNetV2 모델의 정확도를 평가한다. 실험 결과는 성능이 낮은 모델일수록 파라미터와 정확도 간의 강인성이 높아 성능이 좋은 모델보다 정확도를 유지하는 비트 수가 적다는 것을 보여준다.

An Adaptive Cell Selection Scheme for Ultra Dense Heterogeneous Mobile Communication Networks (초밀집 이종 이동 통신망을 위한 적응형 셀 선택 기법)

  • Jo, Jung-Yeon;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1307-1312
    • /
    • 2015
  • As smart-phones become popular, mobile data traffic has been dramatically increasing and intensive researches on the next-generation mobile communication network is in progress to meet the increasing demand for mobile data traffic. In particular, heterogeneous network (HetNet) is attracting much interest because it can significantly enhance the network capacity by increasing the spatial reuse with macro and small cells. In the HetNet, we have several problems such as load imbalance and interference because of the difference in transmit power between macro and small cells and cell range expansion (CRE) can mitigate the problems. In this paper, we propose a new cell selection scheme with adaptive cell range expansion bias (CREB) for ultra dense HetNet and we analyze the performance of the proposed scheme in terms of average cell transmission rate through system-level simulations and compare it with those of other schemes.

A New Cell Selection Scheme with Adaptive Bias for Ultra Dense Heterogeneous Mobile Communication Networks (초밀집 이종 이동 통신망을 위한 적응형 편향치를 활용한 새로운 셀 선택 기법)

  • Jo, Jung-Yeon;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.63-66
    • /
    • 2015
  • As smart-phones become popular, mobile data traffic has been dramatically increasing and intensive researches on the next-generation mobile communication network is in progress to meet the increasing demand for mobile data traffic. In particular, heterogeneous network (HetNet) is attracting much interest because it can significantly enhance the network capacity by increasing the spatial resue with macro and small cells. In the HetNet, we have several problems such as load imbalance and interference because of the difference in transmit power between macro and small cells and cell range expansion (CRE) can mitigate the problems. In this paper, we propose a new cell selection scheme with adaptive cell range expansion bias (CREB) for ultra dense HetNet and we analyze the performance of the proposed scheme in terms of average cell transmission rate through system-level simulations and compare it with those of other schemes.

  • PDF

Effect of transmit power on the optimal number of feedback bits in dense cellular networks (셀룰러 네트워크에서 송신파워가 최적의 피드백 정보량에 미치는 영향에 관한 연구)

  • Min, Moonsik;Na, Cheol-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.464-466
    • /
    • 2018
  • In this paper, a dense cellular network is considered in which each base station equipped with multiple antennas simultaneously communicates with multiple single-antenna users. Based on limited feedback, each user feeds back its quantized channel state information (CSI) to its associated transmitter, and the transmitter broadcasts multiple data streams prepared for the scheduled users using a space-division multiple access scheme. As the amount of CSI is limited at the transmitter, the downlink throughput increases with the number feedback bits. However, the increased number of feedback bits requires the correspondingly increased amount of uplink resources. Thus, an appropriate balance between the downlink throughput and the uplink resource usage should be considered in realistic systems. A net spectral efficiency defined in this context is used in this paper, and the optimal number of feedback bits that maximizes the net spectral efficiency is analyzed. This paper particularly focuses on the case when the received signal power is much smaller than the noise power.

  • PDF

Implementation of Finger Vein Authentication System based on High-performance CNN (고성능 CNN 기반 지정맥 인증 시스템 구현)

  • Kim, Kyeong-Rae;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.197-202
    • /
    • 2021
  • Biometric technology using finger veins is receiving a lot of attention due to its high security, convenience and accuracy. And the recent development of deep learning technology has improved the processing speed and accuracy for authentication. However, the training data is a subset of real data not in a certain order or method and the results are not constant. so the amount of data and the complexity of the artificial neural network must be considered. In this paper, the deep learning model of Inception-Resnet-v2 was used to improve the high accuracy of the finger vein recognizer and the performance of the authentication system, We compared and analyzed the performance of the deep learning model of DenseNet-201. The simulations used data from MMCBNU_6000 of Jeonbuk National University and finger vein images taken directly. There is no preprocessing for the image in the finger vein authentication system, and the results are checked through EER.

Sex determination from lateral cephalometric radiographs using an automated deep learning convolutional neural network

  • Khazaei, Maryam;Mollabashi, Vahid;Khotanlou, Hassan;Farhadian, Maryam
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.239-244
    • /
    • 2022
  • Purpose: Despite the proliferation of numerous morphometric and anthropometric methods for sex identification based on linear, angular, and regional measurements of various parts of the body, these methods are subject to error due to the observer's knowledge and expertise. This study aimed to explore the possibility of automated sex determination using convolutional neural networks(CNNs) based on lateral cephalometric radiographs. Materials and Methods: Lateral cephalometric radiographs of 1,476 Iranian subjects (794 women and 682 men) from 18 to 49 years of age were included. Lateral cephalometric radiographs were considered as a network input and output layer including 2 classes(male and female). Eighty percent of the data was used as a training set and the rest as a test set. Hyperparameter tuning of each network was done after preprocessing and data augmentation steps. The predictive performance of different architectures (DenseNet, ResNet, and VGG) was evaluated based on their accuracy in test sets. Results: The CNN based on the DenseNet121 architecture, with an overall accuracy of 90%, had the best predictive power in sex determination. The prediction accuracy of this model was almost equal for men and women. Furthermore, with all architectures, the use of transfer learning improved predictive performance. Conclusion: The results confirmed that a CNN could predict a person's sex with high accuracy. This prediction was independent of human bias because feature extraction was done automatically. However, for more accurate sex determination on a wider scale, further studies with larger sample sizes are desirable.

Pedestrian Classification using CNN's Deep Features and Transfer Learning (CNN의 깊은 특징과 전이학습을 사용한 보행자 분류)

  • Chung, Soyoung;Chung, Min Gyo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.91-102
    • /
    • 2019
  • In autonomous driving systems, the ability to classify pedestrians in images captured by cameras is very important for pedestrian safety. In the past, after extracting features of pedestrians with HOG(Histogram of Oriented Gradients) or SIFT(Scale-Invariant Feature Transform), people classified them using SVM(Support Vector Machine). However, extracting pedestrian characteristics in such a handcrafted manner has many limitations. Therefore, this paper proposes a method to classify pedestrians reliably and effectively using CNN's(Convolutional Neural Network) deep features and transfer learning. We have experimented with both the fixed feature extractor and the fine-tuning methods, which are two representative transfer learning techniques. Particularly, in the fine-tuning method, we have added a new scheme, called M-Fine(Modified Fine-tuning), which divideslayers into transferred parts and non-transferred parts in three different sizes, and adjusts weights only for layers belonging to non-transferred parts. Experiments on INRIA Person data set with five CNN models(VGGNet, DenseNet, Inception V3, Xception, and MobileNet) showed that CNN's deep features perform better than handcrafted features such as HOG and SIFT, and that the accuracy of Xception (threshold = 0.5) isthe highest at 99.61%. MobileNet, which achieved similar performance to Xception and learned 80% fewer parameters, was the best in terms of efficiency. Among the three transfer learning schemes tested above, the performance of the fine-tuning method was the best. The performance of the M-Fine method was comparable to or slightly lower than that of the fine-tuningmethod, but higher than that of the fixed feature extractor method.

Ultimate Uplift Capacity of Circular Anchors in Layered Soil

  • Shin, Eun-Chul;Das, Braja-M
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • Laboratory model test results for ultimate uplift capacity of horizontal circular anchors embedded in soft clay overlain by dense sand are presented. The effect of the critical embedment ratio on the thickness of the clay layer was evalyated. An approximate preocedure for estimating the net ultimate capacity is presented.

  • PDF

Comparison and Analysis of Dense Optical Flow Algorithm for Realtime System (Dense Optical Flow 기술의 실시간 시스템 적용을 위한 성능 비교 및 분석)

  • Kim, Byungjoon;Seo, Changwook;Seo, Yongduek
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.215-216
    • /
    • 2020
  • Optical Flow는 컴퓨터 비전 분야의 많은 응용기술에 사용된다. 객체 탐지, 추적, 연속 영상 보간, 3D Reconstruction과 같은 최근에 활발히 연구되는 여러 분야에서 사용되는 기반 기술이다. 최근 딥러닝을 기반으로 한 다양한 연구가 활발히 진행되어 왔으며 높은 정확도를 보이고 있다. 이런 분야들은 많은 경우에 실시간 시스템에 적용되어 이미지로부터 정보를 연산한다. 본 논문은 MaskFlownet, SelFlow, LiteFlowNet2 등과 같은 높은 정확도를 가진 신경망 네트워크로 추정된 Optical Flow를 살펴본다. 각 신경망 네트워크로 얻어진 정확도를 비교하고 디스플레이 기술과 이미지 센서 기술의 발전으로 사용 수요가 많아진 고화질의 이미지를 실시간으로 처리하는 경우, 적용 가능한 Optical Flow의 성능을 분석하였다.

  • PDF

Analysis of Social Network Change Characteristics of Participants in Urban Regeneration Project Using NetMiner : Focused on the Urban Regeneration Leading Area in Suncheon-City (NetMiner를 활용한 도시재생사업 참여주체의 시기별 소셜 네트워크 변화 특성 분석 : 순천시 원도심 도시재생선도지역을 중심으로)

  • Gim, Eojin;Koo, Jahoon
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • Suncheon City Regeneration Project is known as the concept of cultural residents. Through the previous projects, the residents' capabilities have been improved, and the projects have been carried out according to their strategies. For this reason, participants in urban regeneration projects are important. The purpose of this study is to actually identify the 'rescue center' and 'direct relationship' with the analysis utilizing the characteristics of social networks NetMiner solution of the participants, who led the project, Suncheon. Surveys and interviews were conducted for participants, and the characteristics of social networks were analyzed in time series to quantify and visualize the results. As a result of the analysis, social networks were changed among the participants before and after the urban regeneration project. Initially, loose networks were denser over time, and initially networks formed only around participants were expanded over time. Network analysis has revealed that the system is strengthening with urban regeneration projects in the form of public and public-private cooperation. This highlights the need for a city-centered urban regeneration strategy centered on people and shows that a dense network of participants can be a success factor.