• Title/Summary/Keyword: Denitrification rate

Search Result 314, Processing Time 0.033 seconds

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.

Characteristics of Corrosion and Water Quality in Simulated Reclaimed Water Distribution Pipelines (모형 재이용관을 이용한 하수재이용수의 부식 및 수질영향 연구)

  • Kang, Sung-Won;Lee, Jai-Young;Lee, Hyun-Dong;Kim, Gi-Eun;Kwak, Pill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.473-479
    • /
    • 2012
  • Water reuse has been highlighted as a representative alternative to solve the lacking water resource. This study carried out a study on the pipe corrosion and water quality change which can occur through the supply of reclaimed water, using a simulated reclaimed water distribution pipeline. Galvanized steel pipe (GSP), cast iron pipe (CIP), stainless steel pipe (STSP) and PVC pipe (PVCP) were used for the pipe materials. Reclaimed water(RW) and tap water(TW) were respectively supplied into simulated reclaimed water distribution pipelines. As a result of performing a loop test to supply reclaimed water to simulated reclaimed water distribution pipelines, the weight reduction of pipe coupons showed the sequence of CIP > GSP > STSP ${\approx}$ PVCP. In addition, reclaimed water showed a high corrosion rate comparing to that of tap water. In case of CIP, the initial corrosion rate showed 3.511 mdd(milligrams per square decimeter per day) for reclaimed water and 2.064 mdd for tap water and the corrosion rate for 90 days showed 0.833 mdd for reclaimed water and 0.294 mdd for tap water. Also in case of GSP, the initial corrosion rate showed 2.703 mdd for reclaimed water and 2.499 mdd for tap water and the corrosion rate for 90 days showed 0.349 mdd for reclaimed water and 0.248 mdd for tap water, which was a tendency similar to that appeared in CIP with a tendency to reduce the corrosion rate. As a result of water quality changes of reclaimed water at pipe materials to carry out the loop test, there was higher conversion ratio of ammonia into nitrate in CIP and GSP with higher corrosion rate than that in STSP and PVCP where no corrosion has occurred. The highest denitrification rate of nitrate could be observed from CIP with the most particles generated from corrosion. In CIP, it could be confirmed that there was MIC (Microbiologically Induced Corrosion) as a result of EDS (Energy Dispersive X-ray spectrometer System) analysis results.

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

Preliminary Nitrogen Removal Rates in Close-to-Nature Constructed Stream Water Treatment Wetland (하천수정화 근자연형 인공습지의 초기 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.269-273
    • /
    • 2002
  • A 0.19 hectare stream water purification demonstration wetland was constructed and planted with cattails from April 2001 to May 2001. Some portions of its bottom surfaces adjacent to levees have a variety of slope of 1:4 $\sim$ 1:15 and two small open water areas were installed in the wetland. These make its shape closer to a natural wetlant Nitrogen removal was a major objective of the wetlant Waters of Sinyang Stream flowing into Kohung Esturiane Lake located southern coastal region of Korean Peninsula were pumped and funneled into it. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Average inflow and outflow were 120 $m^3/d$ and 112 $m^3/d$, respectively. Hydraulic retention time was about 3.1 days. Average nitrate and total nitrogen removal rate for the early stage of the wetlands were 85.8 $mg/m^2/day$, 171.4 $mg/m^2/day$ respectively. Full establishment of cattails within a few years can develope litter-soil substrates and supply available carbon sources beneficial to the denitrification of nitrate. These can lead to increases of the nitrate retention rate. Short circuiting and dead zone areas which might be occurred due to the close-to-nature layout of the wetland were not observed during the monitoring period.

Enhanced total phosphorus removal using a novel membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation (유입흐름 변경 및 전응집 기반 이단응집 제어 적용 MBR을 통한 총인처리 개선 연구)

  • Cha, Jaehwan;Shin, Kyung-Suk;Park, Seung-Kook;Shin, Jung-Hun;Kim, Byung-Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial $PO_4$-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as $Al_2O_3$ caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as $Al_2O_3$, which was much lower than 5.1~7.4 mg/L as $Al_2O_3$ required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.

A study on enhancement of nitrogen removal efficiency on low concentration influent sewage (단계유입과 내부순환을 이용한 저농도 하수의 질소처리효율 향상을 위한 연구)

  • Choo, Tai-Ho;Kim, Tae-Ki;Ok, Chi-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.675-680
    • /
    • 2010
  • This study was investigated to complement nitrogen removal of low concentration influent municipal sewage. The following are the results of the effect of Internal Recircularion and Step Feed rates on Treatment efficiency at a BOD low concentration influent municipal sewage. Up to 90.0% of BOD, 87.8% of COD, 71.0% of T-N, 75.3% of T-P were removed on average at a low concentration influent. Whereas BOD and T-P were removed without any relations to Step Feed rates, T-N was influenced. Nitrogen removal efficiencies in 80% of Step Feed rates was 65%, which was caused by the lack of Carbon Source for denitrification. Nitrogen removal efficiency in 40% of Step Feed rates was 58%, which means it was not removed but dischared. Consequently, the efficiency was 73%, 80%, and 78% in 70%, 60% and 50% of Step Feed rates, which was concluded as the best range of Step Feed rates. Nitrogen removal efficiency increased under the condition of Internal Recircularion. At over 150% of Internal Recircularion rate, the efficiencies were not affected any more. It is believed that lots of Recircularion caused inflow of DO to anoxic tank. Therefore, the most appropriate Internal Recircularion rate can be concluded as 50~150%.

ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF AN IMMOBILIZED BACTERIUM PRODUCING N2 FROM NH4+ UNDER AN AEROBIC CONDITION

  • Park, Kyoung-Joo;Cho, Kyoung-Sook;Kim, Jeong-Bo;Lee, Min-Gyu;Lee, Byung-Hun;Hong, Young-Ki;Kim, Joong-Kyun
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.213-226
    • /
    • 2005
  • To treat wastewater efficiently by a one-step process of nitrogen removal, a new bacterial strain producing $N_2$ gas from ${NH_4}^+$ under an aerobic condition was isolated and identified. The cell was motile and a Gram-negative rod, and usually occurred in pairs. By 16S-rDNA analysis, the isolated strain was identified as Enterobacter asburiae with 96% similarity. The isolate showed that the capacity of $N_2$ production under an oxic condition was approximately three times higher than that under an anoxic condition. Thus, the consumption of ${NH_4}^+$ by the isolate was significantly different in the metabolism of $N_2$ production under the two different environmental conditions. The optimal conditions of the immobilized isolate for $N_2$ production were found to be pH 7.0, $30^{\circ}C$ and C/N ratio 5, respectively. Under all the optimum reaction conditions, $N_2$ production by the immobilized isolate resulted in reduction of ORP with both the consumption of DO and the drop of pH. The removal efficiencies of $COD_{Cr}$, and TN were 56.1 and 60.9%, respectively. The removal rates of $COD_{Cr}$, and TN were the highest for the first 2.5 hrs with the removal $COD_{Cr}/TN$ ratios of 32.1, and afterwards the rates decreased as reaction proceeded. For application of the immobilized isolate to a practical process of ammonium removal, a continuous operation was executed with a synthetic medium of a low C/N ratio. The continuous bioreactor system exhibited a satisfactory performance at 12.1 hrs of HRT, in which the effluent concentrations of ${NH_4}^+$-N was measured to be 15.4 mg/L with its removal efficiency of 56.0%. The maximum removal rate of ${NH_4}^+$-N reached 1.6 mg ${NH_4}^+$-N/L/hr at 12.1 hrs of HRT(with N loading rate of $0.08\;Kg-N/m^3$-carrier/d). As a result, the application of the immobilized isolate appears a viable alternative to the nitrification-denitrification processes.

A Semi-Pilot Test of Bio-barrier for the Removal of Nitrate in Bank Filtrate (강변여과수의 질산성질소 제거를 위한 생물학적 반응벽체의 준파일럿 실험에 관한 연구)

  • Moon, Hee-Sun;Chang, Sun-Woo;Nam, Kyoung-Phile;Kim, Jae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.302-308
    • /
    • 2005
  • Nitrate is one of common contaminants frequently found in the bank filtrate. Biological autotrophic denitrification into permeable reactive barrier(PRB) system to reduce nitrate concentration in bank filtrate was implanted. The objectives of research are to investigate effect of inoculation, to evaluate alternative alkalinity sources, and to determine effect of hydraulic characteristics, such as retention time, flow rate on the performance of semi-pilot PRB system. Semi-pilot scale biological PRB system was installed using elemental sulfur and limestone/oyster shell as reactive materials near Nakdong River in Kyoungnam province, Korea. Nitrate concentration in bank filtrate was reduced by indigenous microorganisms in oyster shell as welt as by inoculating microorganisms isolated from the sludge of an anaerobic digester in a wastewater treatment plant. Oyster shell as well as limestone can be used as an alkalinity source. However, oyster shell resulted in suspended solids of effluent. As the flow rate in the system increased from 66 to 132 mL/min and accordingly the residence time decreased from 15 to 7.5 hours, nitrate concentration in effluent increased and nitrate removal efficiencies decreased from 75 to 58% at the fixed thickness of 80 cm of PRB.

Effects of Ammonia Loading on Nitrification and Nitrite Build-up in an Activated Carbon Fluidized Bed Biofilm Reactor (암모니아 부하가 활성탄 유동상에서의 질산화 및 아질산 축적에 미치는 영향)

  • Choi, In-Cheol;Park, Soo-Young;Lee, Kwan-Yong;Bae, Jae-Ho;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • The effects of ammonia loading on nitrification, especially on nitrite build-up, in an activated carbon fluidized bed reactor were investigated by increasing the ammonia loading rate stepwise from 0.1 to $7.5kg\;NH_3-N/m^3{\cdot}day$. Although effluent nitrite concentration and nitrification efficiency fluctuated at the loading rates above $1.8kg\;NH_3-N/m^3{\cdot}day$, an average nitrification efficiency of 90% was achieved. Nitrite build-up began at an ammonia loading rate of $l.8kg\;NH_3-N/m^3{\cdot}day$, at which the free ammonia concentration was estimated to be above 1 mg/L. During the nitrite build-up, the ratio of influent $NH_3-N$ concentration to the DO concentration of the reactor liquor and the ratio of effluent $NH_3-N$ concentration to the DO concentration of the reactor liquor was measured to be above 100 and 2, respectively. Considering the advantages of nitritation/denitrification, a fluidized bed reactor could be an effective means for biological nitrification of wastewaters with high ammonia concentration.

  • PDF

Analysis of Free Ammonia Inhibition of Nitrite Oxidizing Bacteria Using a Dissolved Oxygen Respirometer

  • Kim, Dong-Jin;Lee, Dong-Ig;Cha, Gi-Cheol;Keller, Jurg
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Free ammonia ($NH_3$-N) inhibition of nitrite-oxidizing bacteria (NOB) has been widely studied for partial nitrification (or nitrite accumulation) and denitrification via nitrite ($NO_2^-$-N) as a low-cost treatment of ammonium containing wastewater. The literature on $NH_3$-N inhibition of NOB, however, shows disagreement about the threshold $NH_3$-N concentration and its degree of inhibition. In order to clarify the confusion, a simple and cheap respirometric method was devised to investigate the effect of free ammonia inhibition of NOB. Sludge samples from an autotrophic nitrifying reactor were exposed to various $NH_3$-N concentrations to measure the maximum specific nitrite oxidation rate ($\hat{K}_{NO}$) using a respirometer. NOB biomass was estimated from the yield values in the literature. Free ammonia inhibition of nitrite oxidizing bacteria was reversible and the specific nitrite oxidation rate ($K_{NO}$) decreased from 0.141 to 0.116, 0.100, 0.097 and 0.081 mg $NO_2^-$-N/mg NOB h, respectively, as the $NH_3$-N concentration increased from 0.0 to 1.0, 4.1, 9.7 and 22.9 mg/L. A nonlinear regression based on the noncompetitive inhibition mode gave an estimate of the Inhibition concentration ($K_I$) of free ammonia to be 21.3 mg $NH_3$-N/L. Previous studies gave $\hat{K}_{NO}$ of Nitrobacter and Nitrospira as 0.120 and 0.032 mg/mg VSS h. The free ammonia concentration which inhibits Nitrobacter was $30{\sim}50\;mg$ $NH_3$-N/L and Nitrospira was inhibited at $0.04{\sim}0.08\;mg$ $NH_3$-N/L. The results support the fact that Nitrobacter is the dominant NOB in the reactor. The variations in the reported values of free ammonia inhibition may be due to the different species of nitrite oxidizers present in the reactors. The respirometric method provides rapid and reliable analysis of the behavior and community of the nitrite oxidizing bacteria.