• Title/Summary/Keyword: Dendrites

Search Result 165, Processing Time 0.031 seconds

Comparative Study on the Nucleus accumbens septi and the Nucleus fundus striati III. Changes in the Neuropil following the Lesion in the Mamillary Body or the Extirpation of Hippocampal Formation (중격측좌핵과 선조체 기저핵의 비교연구 III. 유두체 손상과 해마제거의 영향)

  • Ahn, E-Tay;Kim, Jong-Kyu;Yang, Nam-Gil;Ko, Jeong-Sik;Lee, Bong-Hee;Park, Kyung-Ho
    • Applied Microscopy
    • /
    • v.18 no.1
    • /
    • pp.35-48
    • /
    • 1988
  • To investigate the connections between the major limbic structures and the nucleus accumbens septi or the nucleus fundus striati, stereotaxic surgeries were performed. One group of the rats were electrically lesioned in the mamillary body, and the other group were extirpated their hippocampal formation. Careful study of both nuclei following each surgery showed the following results. 1. Nerve terminals of mamillo-accumbens tract were synapsed to the dendrite of nucleus accumbens cell, whereas the neuronal type of accumbens-mamillary tract was aspiny cell. 2. Nerve terminals of mamillo-fundus tract were synapsed to the spines of fundus striati cells. Fundus-mamillary tract cells were not confirmed. 3. Nerve terminals of hippocampo-accumbens terminals were synapsed to the dendrites and spines of nucleus accumbens cells, whereas the neuronal type of accumbens-hippocampal tract was spiny one. 4. Nerve terminals of hippocampo-fundus tract were synapsed to the spines of fundus striati cells, whereas the neuronal types of fundus-hippocampal tract was aspiny one. 5. From the results, it was concluded that both of the nucleus accumbens septi and the fundus striati have connections with the mamillary body and the hippocampus. But nucleus accumbens septi has apparently more intimate relationship with major limbic structures.

  • PDF

Whole Mount Preparation of Primary Cultured Neuron for HVEM Observation (배양된 시경세포 관찰을 위한 초고압전자현미경 홀마운트 시료제작기법)

  • Kim, Hyun-Wook;Hong, Soon-Taek;Oh, Seung-Hak;Park, Chang-Hyun;Kim, Hyun;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • High-voltage electron microscope (HVEM) has higher resolution and penetration power than conventional transmission electron microscope that could be load thick specimen. Some researchers have taken this advantage of HVEM to explore 3-dimensional configuration of the biological structures including tissue and cells. Whole mount preparations has been employed to study some cell lines and primary culture cells. In this study, we would like to introduce useful whole mount preparation method for neuronal studies. The plastic coverslips were punched, covered by formvar membrane and coated with carbon. The neurons obtained embryonic 18 rat hippocampus were seeded on the prepared cover slip. The coverslips were fixed, dried in freeze drier and kept in a descicator until HVEM observation. We could observe detailed neuronal structures such as soma, dendrite and spine under HVEM without conventional thin section and heavy metal stain. The anaglyphic image based on stereo paired image ($-8^{\circ},+8^{\circ}$) provides three dimensional perception of the neuronal dendrites and their spines. This method could be applied to sophisticated analysis of dendritic spine under the various experimental conditions.

Localization of Translation Initiation Factors to the Postsynaptic Sites (신경세포 연접후 위치에 단백질합성 해석시작인자(eIF)들의 존재)

  • Choi, Myoung-Kwon;Park, Sung-Dong;Park, In-Sick;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1526-1531
    • /
    • 2011
  • Local protein synthesis in neuronal dendrites is important for site-specific regulation of synaptic plasticity. In this study, we investigated whether translation initiation factors (eIFs) are present at the postsynaptic sites. High resolution confocal microscopy showed that the eIF4E and eIF4G (which bind the 5'-terminal mRNA cap), eIF5 (which is important during the 3' direction scanning to find an initiation codon), eIF6 (which mediates upregulation of translation by external stimuli), and eIF5A (which mediate translation upregulation under adverse conditions) were localized to the post-synaptic sites. Immunoblot and detergent extraction experiments also indicated that these eIFs were present in the synapse in association with the postsynaptic density (PSD). Our data provide evidence for the strategic positioning of eIFs at the postsynaptic site for initiation of translation in diverse situations.

Inhibition effect of neuronal death by Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells (흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)에 의한 신경세포사 저해 효과)

  • Kim, Wan-Sik;Jung, Seung-Hyun;Shin, Gil-Jo;Moon, Il-Soo;Lee, Won-Chol
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.143-149
    • /
    • 2007
  • Scutellaria baicalensis GEORGI(SB) is used in oriental medicine for the treatment of incipient strokes. Although it has been reported that SB is neuroprotective in a hypoxia model, its mechanism is poorly understood. Here, we investigated the effect of SB on the modulation of retinoic acid receptor a (RARa). Rat cerebrocortical cells were grown in neurobasal medium. On DIV12 cells were treated with SB $(20{\mu}g/ml)$ and given a hypoxic shock $(2%\;O_2/5%\;CO_2,\;3hr)$ on DIV14. In situ hybridization using cRNA probe revealed that RARa mRNA punctae are distributed, in addition to nucleus, throughout neuronal dendrites, where SB upregulated its density by 69.8% (p=0.001) and 129.8% (p=0.001) in both normoxia and hypoxia, respectively. At the protein level, SB upregulated RARa in the neuronal soma by 78.8% (p=0.004) and 23.6% (p=0.001) in both normoxia and hypoxia, respectively. These results indicate that SB upregulates RARa in both normoxia and hypoxia, which might contribute to the neuroprotection.

Immunocytochemical Localization of Nitric Oxide Synthase-containing Neurons in Mouse and Rabbit Visual Cortex and Co-Localization with Calcium-binding Proteins

  • Lee, Jee-Eun;Jeon, Chang-Jin
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.408-417
    • /
    • 2005
  • Nitric oxide (NO) occurs in various types of cells in the central nervous system. We studied the distribution and morphology of neuronal nitric oxide synthase (NOS)-containing neurons in the visual cortex of mouse and rabbit with antibody immunocytochemistry. We also compared this labeling to that of calbindin D28K, calretinin, and parvalbumin. Staining for NOS was seen both in the specific layers and in selective cell types. The densest concentration of intense anti-NOS immunoreactive (IR) neurons was found in layer VI, while the weak anti-NOS-IR neurons were found in layer II/III in both animals. The NOS-IR neurons varied in morphology. The large majority of NOS-IR neurons were round or oval cells with many dendrites coursing in all directions. Two-color immunofluorescence revealed that only 16.7% of the NOS-IR cells were double-labeled with calbindin D28K in the mouse visual cortex, while more than half (51.7%) of the NOS-IR cells were double-labeled with calretinin and 25.0% of the NOS-IR cells were double-labeled with parvalbumin in mouse. By contrast, 92.4% of the NOS-IR neurons expressed calbindin D28K while only 2.5% of the NOS-IR neurons expressed calretinin in the rabbit visual cortex. In contrast with the mouse, none of the NOS-IR cells in the rabbit visual cortex were double-labeled with parvalbumin. The results indicate that neurons in the visual cortex of both animals express NOS in specific layers and cell types, which do not correlate with the expression of calbindin D28K, calretinin or parvalbumin between the two animals.

Distribution and Morphology of Calretinin-Immunoreactive Neurons in the Intermediate and Deep Layers of Cat Superior Colliculus

  • Jeon, Chang-Jin;Sung, Jin-Young;Hong, Soo-Kyung
    • Animal cells and systems
    • /
    • v.7 no.2
    • /
    • pp.151-157
    • /
    • 2003
  • Calretinin is thought to play roles in calcium buttering. Its site of expression has been extensively studied in the central nervous system. We previously reported (Hong et at.,2002, Neurosci. Res.,44: 325-335) calretinin expression in the superficial layers of the cat superior colliculus (SC). In the present study, we studied the distribution of calretinin in the intermediate and deep layers by immunocytochemistry. We found striking differences in calretinin immunoreactivity among the superficial, intermediate, and deep layers. In contrast to the superficial layers, the intermediate and deep layers contained many calretinin-immunoreactive (IR) neurons. They formed two laminar tiers. The first tier, which was very distinctive, was found within the upper intermediate gray layers and formed clusters of labeled neurons in many sections. The second tier of calretinin-IR neurons was found in the deep gray layer. However, the second tier was not distinctive compared to the first tier and the labeled neurons did not form any clusters. Calretinin-IR neurons in the intermediate and deep layers varied dramatically in morphology and included vortical fusiform, pyriform, and stellate neurons. Neurons with varicose dendrites were also labeled. Most of the labeled neurons were small to medium in size. Enucleation appeared to have no effect on the distribution of calretinin immunoreactivity in the contralateral intermediate and deep layers of the SC. The results indicate that calretinin is present in various neurons, at different locations. These results should be applicable for better understanding of the functional organization of the SC.

The Effect of Red Ginseng on Epidermal Melanocytes in Ultraviolet B-irradiated Mice (자외선 B를 조사한 마우스 표피멜라닌세포 변화에 대한 홍삼의 효과)

  • Lee, Hae-June;Kim, Se-Ra;Kim, Joong-Sun;Moon, Chang-Jong;Kim, Jong-Choon;Bae, Chun-Sik;Jang, Jong-Sik;Jo, Sung-Kee;Kim, Sung-Ho
    • Journal of Ginseng Research
    • /
    • v.30 no.4
    • /
    • pp.188-193
    • /
    • 2006
  • We induced the activation of melanocytes in the epidermis of C57BL/6 mice by ultraviolet B (UVB) irradiation and observed the effect of red ginseng (RG) on the formation, and decrease of UVB-induced epidermal mel-anocytes. C57BL/6 mice were irradiated by UVB $80mJ/cm^2$ (0.5 mW/sec) daily for 7 days, and RG was intraperitoneally or topically applied pre- or post-irradiation. For the estimation of change of epidermal melanocytes, light microscopic observation with dihydroxyphenylalanine (DOPA) stain was performed. Split epidermal sheets prepared from the ear of untreated mice exhibited 11-16 $melanocytes/mm^2$, and one week after UV irradiation, the applied areas show an increased number of strongly DOPA-positive melanocytes with stout dendrites. But intraperitoneal or topical treatment with RG before each irradiation interrupted UVB-induced pigmentation and resulted in a marked reduction in the number of epidermal melanocytes as compared to radiation control skin. The number and size of DOPA-positive epidermal mel-anocytes were also significantly decreased in intraperitoneally injected or topically applicated group after irradiation with RG at 3rd and 6th weeks after irradiation. The present study suggests the RG as inhibitor of UVB-induced pigmentation and depigmenting agent.

N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons

  • Islam, Md. Ariful;Sharif, Syeda Ridita;Lee, HyunSook;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.876-885
    • /
    • 2015
  • N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.

Upregulation of Dendritic Arborization by N-acetyl-D-Glucosamine Kinase Is Not Dependent on Its Kinase Activity

  • Lee, HyunSook;Dutta, Samikshan;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.322-329
    • /
    • 2014
  • N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is highly expressed and plays a critical role in the development of dendrites in brain neurons. In this study, the authors conducted structure-function analysis to verify the previously proposed 3D model structure of GlcNAc/ATP-bound NAGK. Three point NAGK mutants with different substrate binding capacities and reaction velocities were produced. Wild-type (WT) NAGK showed strong substrate preference for GlcNAc. Conversion of Cys143, which does not make direct hydrogen bonds with GlcNAc, to Ser (i.e., C143S) had the least affect on the enzymatic activity of NAGK. Conversion of Asn36, which plays a role in domain closure by making a hydrogen bond with GlcNAc, to Ala (i.e., N36A) mildly reduced NAGK enzyme activity. Conversion of Asp107, which makes hydrogen bonds with GlcNAc and would act as a proton acceptor during nucleophilic attack on the ${\gamma}$-phosphate of ATP, to Ala (i.e., D107A), caused a total loss in enzyme activity. The overexpression of EGFP-tagged WT or any of the mutant NAGKs in rat hippocampal neurons (DIV 5-9) increased dendritic architectural complexity. Finally, the overexpression of the small, but not of the large, domain of NAGK resulted in dendrite degeneration. Our data show the effect of structure on the functional aspects of NAGK, and in particular, that the small domain of NAGK, and not its NAGK kinase activity, plays a critical role in the upregulation of dendritogenesis.

Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures

  • Jung, Yeon Joo;Suh, Eun Cheng;Lee, Kyung Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.423-429
    • /
    • 2012
  • Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.