• Title/Summary/Keyword: Dendrite Formation

Search Result 86, Processing Time 0.027 seconds

Influence of Bismuth and Antimony Additions on the Structures and Casting Properties of Lead-free Cu-Zn-Sn Bronze Castings (무연 Cu-Zn-Sn 청동의 조직과 주조성에 미치는 Bi 및 Sb 첨가의 영향)

  • Park, Heung-Il;Park, Sung-Ik;Kim, Sung-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.91-97
    • /
    • 2012
  • The effects of Bi and Sb additions on the microstructures and casting properties in lead-free Cu-Zn-Sn broze were investigated. (1) When only Bi was added to the bronze, Bi was precipitated on the ${\delta}$ phase of ${\alpha}$ dendrite cell boundary. When Bi and Sb were added together, Bi was precipitated on the ${\delta}_A$ which was the Sb-rich area in the ${\delta}$ phase. (2) The addition of Sb accelerated the formation of ${\delta}$ phase, and when Sb, Bi and Pb were added, Bi and Pb were precipitated as mixed solution in the ${\delta}_A$ phase. (3) The combined addition of Sb and Bi resulted in the suppression of shrinkage due to the complementary effects of the mass feeding of ${\alpha}$-dendrite cluster covered with ${\delta}$ phase and sealing of micro-shrinkage in the ${\delta}$ phase by solidification expansion of Bi.

Influence of Heat Input and Weld Bead Composition on Welding Property in the Laser Welding between Sintered Segment and Mild Steel Shank (소결체와 저탄소강의 레이저용접 특성에 미치는 입열량 및 용접부 성분변화의 영향)

  • Jung Woo-Gwang;Cho Nam-Joon;Kim Sung-Wook;Lee Chang-Hee;Kim Sung-Dea;Lee Joo-Hyung;Park Hwa-Soo
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.425-431
    • /
    • 2004
  • A laser welding was applied between sintered tip of Fe-Co-W and low carbon steel shank for the diamond saw blade. The welding characteristics and formation of defects were investigated carefully for the weld fusion zone in different welding condition. Dendrite arm spacing in weld bead decreased with decrease of heat input. Co and W increased and Fe decreased in the weld fusion zone with increase of the heat input. The corresponding change of composition was observed with the change of beam position. The maximum and total length of crack decreased with increase of the heat input. The crack in weld bead was propagated along the dendrite boundary and was caused mainly by the segregation of constituent during the solidification.

Solidification Microstructure and Carbide Formation behaviors in the Co-base Superalloy ECY768 (Co기 초합금 ECY768에서 응고 조직 및 탄화물 형성 거동)

  • Lee, J.S.;Kim, H.C.;Lee, J.H.;Seo, S.M.;Jo, C.Y.
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.381-388
    • /
    • 2003
  • Directional solidification experiments were carried out at 0.5-150 $\mu\textrm{m}$/s in the Co-base superalloy ECY 768. As increasing solidification rate, the dendrite length increased and it reached the maximum at 150 $\mu\textrm{m}$/s, where the tip temperature is close to the liquidus. The liquidus and eutectic temperatures could be estimated by comparing the dendrite lengths and the temperature gradients at the solid/liquid interface and those were estimated as $1424.6^{\circ}C$ and $1343^{\circ}C$ respectively. Between the dendrites just below final freezing temperature, MC carbide and $M_{23}$$C_{6}$ carbide were found. It was confirmed that the script or blocky shape was Ta or W-rich MC carbide, and the lamellar shape was Cr-rich eutectic carbide. The solid/liquid interface morphology clearly showed that the Cr-rich eutectic carbide formed just after the script type MC carbide.

Phase-Field Modelling of Zinc Dendrite Growth in ZnAlMg Coatings

  • Mikel Bengoetxea Aristondo;Kais Ammar;Samuel Forest;Vincent Maurel;Houssem Eddine Chaieb;Jean-Michel Mataigne
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.93-103
    • /
    • 2024
  • In the present work, a phase-field model for dendritic solidification is applied to hot-dip ZnAlMg coatings to elucidate the morphology of zinc dendrites and the solute segregation leading to the formation of eutectics. These aspects define the microstructure that conditions the corrosion resistance and the mechanical behaviour of the coating. Along with modelling phase transformation and solute diffusion, the implemented model is partially coupled with the tracking of crystal orientation in solid grains, thus allowing the effects of surface tension anisotropy to be considered in multi-dendrite simulations. For this purpose, the composition of a hot-dip ZnAlMg coating is assimilated to a dilute pseudo-binary system. 1D and 2D simulations of isothermal solidification are performed in a finite element solver by introducing nuclei as initial conditions. The results are qualitatively consistent with existing analytical solutions for growth velocity and concentration profiles, but the spatial domain of the simulations is limited by the required mesh refinement.

Development of a Fast Charging System Utilizing Charge Profile and Cell Balance Control Technology for Large Capacity Lithium-ion Batteries (충전 프로파일 및 셀 밸런스 제어기술을 활용한 대용량 리튬이온 배터리 고속충전시스템 개발)

  • Yunana, Gani Dogara;Ahn, Jae Young;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Lithium-ion cells have become the go-to energy source across all applications; however, dendritic growth remains an issue to tackle. While there have been various research conducted and possible solutions offered, there is yet to be one that efficiently rules out the problem without, however, introducing another. This paper seeks to present a fast charging method and system to which lithium-ion batteries are charged while maintaining their lifetime. In the proposed method, various lithium cells are charged under multiple profiles. The parameters of charge profiles that inflict damage to the cell's electrodes are obtained and used as thresholds. Thus, during charging, voltage, current, and temperature are actively controlled under these thresholds. In this way, dendrite formation suppressed charging is achieved, and battery life is maintained. The fast-charging system designed, comprises of a 1.5kW charger, an inbuilt 600W battery pack, and an intelligent BMS with cell balancing technology. The system was also designed to respond to the aging of the battery to provide adequate threshold values. Among other tests conducted by KCTL, the cycle test result showed a capacity drop of only 0.68% after 500 cycles, thereby proving the life maintaining capability of the proposed method and system.

$CO_2$ Weldability of Zn Coated Steel Sheet(1) - Weld Defects and Its Characteristics in Welds - (아연도금강판의 $CO_2$ 용접특성(1) - 용접부 결함의 종류와 특성 -)

  • 이종봉;안영호;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.91-96
    • /
    • 2000
  • Characteristics of the weld defect, such as a blowhole and a pit in lap-jointed fillet Co₂ welds of Zn-coated steel sheet were studied in order to make clear the sequence of the blowhole formation during welding. Main conclusions obtained are as follows: 1) Blowhole, wormhole and pit were found in fillet welds, although the optimum welding condition of 200A-23V-100cm/min was applied. 2) Zn was only detected at the solidification boundary at the early stage of the blowhole formation. 3) Most of the blowholes was started to form at lap-joint by the Zn vapor. With increasing of the Zn vapor and its pressure, the blowhole was develope to th bed surface until the completion of weld solidification. 4) The behavior of the blowhole in growth was similar to that of the columnar dendrite during welding.

  • PDF

Effect of Laser Pulse Shaping on Reduction in Defects of Stainless Steel Sport Weld Metals (스텐레스 강 용접부에 형성되는 결함의 저감에 미치는 레이저 펄스 파형의 영향)

  • 김종도;카따야마세이지
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 1997
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG Laser welding. A large porosity was formed in a keyhole mode of deep penetration weld metal of any stainless steel. Solidification cracks were present in Type 303 with about 0.3%s. The conditions for the formation of porosity were determined in further detail in Type 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of Type 310S. through high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

  • PDF

Evolution on Microstructure and Mechanical Property of Ti65Fe35 Hypereutectic Alloys by Adding Low Melting Temperature Elements (저융점 원소의 첨가에 따른 Ti65Fe35 과공정 합금의 미세구조와 기계적 특성의 변화)

  • Hwang, Yun Jung;Hong, Sung Hwan;Kim, Jeong Tae;Kim, Young Seok;Park, Hae Jin;Kim, Hee Jin;Jeong, Yeon Beom;Lee, Young Hoon;Kim, Ki Buem
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.557-562
    • /
    • 2017
  • The microstructural evolution and modulation of mechanical properties were investigated for a $Ti_{65}Fe_{35}$ hypereutectic alloy by addition of $Bi_{53}In_{47}$ eutectic alloys. The microstructure of these alloys changed with the additional BiIn elements from a typical dendrite-eutectic composite to a bimodal eutectic structure with primary dendrite phases. In particular, the primary dendrite phase changed from a TiFe intermetallic compound into a ${\beta}$-Ti solid solution despite their higher Fe content. Compressive tests at room temperature demonstrated that the yield strength slightly decreased but the plasticity evidently increased with an increasing Bi-In content, which led to the formation of a bimodal eutectic structure (${\beta}$-Ti/TiFe + ${\beta}$-Ti/BiIn containing phase). Furthermore, the (Ti65Fe35)95(Bi53In47)5 alloy exhibited optimized mechanical properties with high strength (1319MPa) and reasonable plasticity (14.2 %). The results of this study indicate that the transition of the eutectic structure, the type of primary phases and the supersaturation in the ${\beta}$-Ti phase are crucial factors for controlling the mechanical properties of the ultrafine dendrite-eutectic composites.

Effect of Small Additives on the Microstructure of Strip-Cast Nd-Fe-B Alloys (소량의 첨가원소가 Strip-Cast Nd-Fe-B 향금의 미세 조직 형성에 미치는 영향)

  • Lee, D.H.;Jang, T.S.;Kim, D.H.;Kim, Andrew-S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.196-200
    • /
    • 2004
  • In order to improve dendritic formation of Nd$_2$Fe$\_$14/B phase in the strip-cast Nd-Fe-B alloys that are frequently used for production of high energy sintered magnets, effect of small substitutional additives such as Cu (0.3~1.0 at. %) and Co (0.5~1.5 at.%) on the phase formation and microstructures of the strip-cast alloys based on Nd$\_$14/Fe$\_$80/B$\_$6/ were investigated. As the amount of Cu addition increased, formation of Nd$_2$Fe$\_$14/B dendrites along the direction normal to the strip surface was suppressed with the reduction of the strip thickness mainly due to the increase of fluidity of the melt. However, both the dendrites and their <001> preferred orientation along the direction normal to the strip surface were improved with the increase of the strip thickness as the amount of Co addition increased. The dendrites became finer after small amount of Cu or Co was added. While small copper additions tended to stabilize the formation of primary Fe, small cobalt additions suppressed it. When small amount of Zr was added, however, the dendrite structures were totally collapsed with excessive grain growth of Nd$_2$Fe$\_$14/B.

BONDING PHENOMENON IN TRANSIENT LIQUID PHASE BONDING OF NI BASE SUPERALLOY GTD-111

  • Kang, Chung-Yun;Kim, Dae-Up;Woo, In-Soo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.798-802
    • /
    • 2002
  • Metallurgical studies on the bonded interlayer of directionally solidified Ni-base superalloy GTD111 joints were carried out during transient liquid phase bonding. The formation mechanism of solid during solidification process was also investigated. Microstructures at the bonded interlayer of joints were characterized with bonding temperature. In the bonding process held at 1403K, liquid insert metal was eliminated by well known mechanism of isothermal solidification process and formation of the solid from the liquid at the bonded interlayer were achieved by epitaxial growth. In addition, grain boundary formed at bonded interlayer is consistent with those of base metal. However, in the bonding process held at 1453K, extensive formation of the liquid phase was found to have taken place along dendrite boundaries and grain boundaries adjacent to bonded interlayer. Liquid phases were also observed at grain boundaries far from the bonding interface. This phenomenon results in liquation of grain boundaries. With prolonged holding, liquid phases decreased gradually and changed to isolated granules, but did not disappeared after holding for 7.2ks at 1473K. This isothermal solidification occurs by diffusion of Ti to be result in liquation. In addition, grain boundaries formed at bonded interlayer were corresponded with those of base metal. In the GTD-ll1 alloy, bonding mechanism differs with bonding temperature.

  • PDF