DOI QR코드

DOI QR Code

Evolution on Microstructure and Mechanical Property of Ti65Fe35 Hypereutectic Alloys by Adding Low Melting Temperature Elements

저융점 원소의 첨가에 따른 Ti65Fe35 과공정 합금의 미세구조와 기계적 특성의 변화

  • Hwang, Yun Jung (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Hong, Sung Hwan (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kim, Jeong Tae (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kim, Young Seok (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Park, Hae Jin (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kim, Hee Jin (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Jeong, Yeon Beom (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Lee, Young Hoon (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kim, Ki Buem (Department of Nanotechnology and Advanced Materials Engineering, Sejong University)
  • 황윤중 (세종대학교 나노신소재공학과) ;
  • 홍성환 (세종대학교 나노신소재공학과) ;
  • 김정태 (세종대학교 나노신소재공학과) ;
  • 김영석 (세종대학교 나노신소재공학과) ;
  • 박혜진 (세종대학교 나노신소재공학과) ;
  • 김희진 (세종대학교 나노신소재공학과) ;
  • 정연범 (세종대학교 나노신소재공학과) ;
  • 이영훈 (세종대학교 나노신소재공학과) ;
  • 김기범 (세종대학교 나노신소재공학과)
  • Received : 2017.07.31
  • Accepted : 2017.09.21
  • Published : 2017.10.27

Abstract

The microstructural evolution and modulation of mechanical properties were investigated for a $Ti_{65}Fe_{35}$ hypereutectic alloy by addition of $Bi_{53}In_{47}$ eutectic alloys. The microstructure of these alloys changed with the additional BiIn elements from a typical dendrite-eutectic composite to a bimodal eutectic structure with primary dendrite phases. In particular, the primary dendrite phase changed from a TiFe intermetallic compound into a ${\beta}$-Ti solid solution despite their higher Fe content. Compressive tests at room temperature demonstrated that the yield strength slightly decreased but the plasticity evidently increased with an increasing Bi-In content, which led to the formation of a bimodal eutectic structure (${\beta}$-Ti/TiFe + ${\beta}$-Ti/BiIn containing phase). Furthermore, the (Ti65Fe35)95(Bi53In47)5 alloy exhibited optimized mechanical properties with high strength (1319MPa) and reasonable plasticity (14.2 %). The results of this study indicate that the transition of the eutectic structure, the type of primary phases and the supersaturation in the ${\beta}$-Ti phase are crucial factors for controlling the mechanical properties of the ultrafine dendrite-eutectic composites.

Keywords

References

  1. H. Gleiter, Acta Mater., 48, 1 (2000). https://doi.org/10.1016/S1359-6454(99)00285-2
  2. W. L. Johnson, MRS Bull., 24, 42 (1999). https://doi.org/10.1557/S0883769400069980
  3. J. M. Park, D.H. Kim, K. B. Kim, N. Mattern and J. Eckert, J. Mater. Res., 26, 365 (2011). https://doi.org/10.1557/jmr.2010.50
  4. M. Dao, L. Lu, R. J. Asaro, J. T. M. De Hosson and E. Ma, Acta Mater., 55, 4041 (2007). https://doi.org/10.1016/j.actamat.2007.01.038
  5. C. A. Schuh, T. C. Hufnagel and U. Ramamurty, Acta Mater., 55, 4067 (2007). https://doi.org/10.1016/j.actamat.2007.01.052
  6. G. He, J. Eckert, W. Loser and L. Schultz, Nat. Mater., 33 (2003).
  7. G. He, J. Eckert and W. Loser, Acta Mater., 51, 1621 (2003). https://doi.org/10.1016/S1359-6454(02)00563-3
  8. K. Ishikawa, T. Takano, T. Matsuda and K. Aoki, Appl. Phys. Lett., 87, 081906 (2005). https://doi.org/10.1063/1.2006985
  9. S. Scudino, J. Das, M. Stoica, K. B. Kim and M. Kusy, J. Eckert, Appl. Phys. Lett., 88, 201920e2 (2006).
  10. L. L. Shi, H. Ma, T. Liu, J. Xu and E. Ma., J. Mater. Res., 21, 613e22 (2006).
  11. J. Eckert, J. Das, G. He, M. Calin and K. B. Kim, Mater. Sci. Eng., A, 449, 24 (2007).
  12. G. A. Song, W. H. Lee, N. S. Lee, J. M. Park, D. H. Kim, D. H. Kim, J. Lee and J. S. Park, J. Mater. Res., 24, 2892 (2009). https://doi.org/10.1557/jmr.2009.0330
  13. K. B. Kim, J. Das, W. Xu, Z. F. Zhang and J. Eckert, Acta Mater., 54, 3701 (2006). https://doi.org/10.1016/j.actamat.2006.04.006
  14. J. Das, K. B. Kim, F. Baier, W. Loser and J. Eckert, Appl. Phys. Lett., 87, 161907 (2005). https://doi.org/10.1063/1.2105998
  15. J. M. Park, N. Mattern, U. Kuhn, J. Eckert, K. B. Kim, W. T. Kim, K. Chattopadhyay and D. H. Kim, J. Mater. Res., 24, 2605 (2009). https://doi.org/10.1557/jmr.2009.0297
  16. J. M. Park, D. H. Kim, K. B. Kim and W. T. Kim, Appl. Phys. Lett., 91, 131907 (2007). https://doi.org/10.1063/1.2793189
  17. G. A. Song, J. H. Han, T. E. Kim, J. M. Park, D. H. Kim, S. Yi, Y. Seo, N. S. Lee and K. B. Kim, Intermetallics, 19, 536 (2011). https://doi.org/10.1016/j.intermet.2010.11.030
  18. C. H. Lee, S. H. Hong, J. T. Kim, H. J. Park, G. A. Song, J. M. Park and K. B. Kim, Mater. Des., 60, 363 (2014). https://doi.org/10.1016/j.matdes.2014.03.048
  19. D.V. Louzguine, H. Kato, L.V. Louzguina and A.Inoue, J. Mater. Res., 19, 3600 (2004). https://doi.org/10.1557/JMR.2004.0462
  20. J. T. Kim, S. W. Lee, S. H. Hong, H. J. Park, J. Y. Park, N. Lee and K. B. Kim, Mater. Des., 92, 1038 (2016). https://doi.org/10.1016/j.matdes.2015.12.080
  21. D. V. Louzguine-Luzgin, L. V. Louzguina-Luzgina, H. Kato and A. Inoue, Acta Mater., 53, 2009 (2005). https://doi.org/10.1016/j.actamat.2005.01.012
  22. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun and E. Ma, Nat. Mater., 12, 344 (2013). https://doi.org/10.1038/nmat3544

Cited by

  1. High-Strength Ti-Based Alloys Containing Fe as One of the Main Alloying Elements vol.59, pp.10, 2018, https://doi.org/10.2320/matertrans.M2018114