• Title/Summary/Keyword: Dendrimer

Search Result 152, Processing Time 0.033 seconds

Preparation of PEGDA/PETEDA Dendrimer Membranes for $CO_2$ Separation ($CO_2$ 분리를 위한 PEGDA/PETEDA dendrimer 막의 제조)

  • Han, Na;Lee, Hyunkyung
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • PEGDA/PETEDA dendrimer composite membranes was prepared by UV photopolymerizing of poly ethylene glycol diacrylate (PEGDA) containing 5~15 wt% pentaerythrityl tetraethylenediamine (PETEDA) dendrimer. The prepared composite membrane was characterized by FT-IR, $^1H$-NMR and DSC. The glass transition temperature ($T_g$) of PEGDA/PETEDA dendrimer composite decreased with the increment of PETEDA dendrimer content. The $CO_2$ separation properties over $CH_4$ were investigated by changing the PETEDA dendrimer content and pressure. The composite membrane containing 10 wt% PETEDA dendrimer exhibited on excellent $CO_2/CH_4$ ideal selectivity of 31.8 and a $CO_2$ permeability of 162.2 barrer.

Gas Permeation Characteristics of PTMSP/PMMH Dendrimer Composite Membranes (PTMSP/PMMH Dendrimer 복합막의 기체투과특성)

  • Lee, Hyun-Kyung;Jung, Won-Sook
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2008
  • PTMSP/PMMH dendrimer composite membranes were made by dispersing $0{\sim}20$ wt% (based on polymer content) PMMH dendrimer nanoparticles in the PTMSP casting solution. The effect of PMMH dendrimer on gas permeability characteristics of the composite membranes was investigated. The permeabilities of $H_2,\;N_2,\;CO_2$, and $CH_4$ decreased as the PMMH dendrimer content within PTMSP increased. The permeabilities of different gases except hydrogen in PTMSP/PMMH dendrimer membranes follow the order: $N_2\;<\;CH_4\;<\;CO_2$ which are consistent with the order of critical temperature ($N_2\;<\;CH_4\;<\;CO_2$). The selectivities of gases for $N_2$ increased as the PMMH dendrimer content within PTMSP increased. The $CO_2/N_2$ selectivity increased from 5.6 up to 16.9.

Modulation of Electroosmotic Flow through Skin: Effect of Poly(Amidoamine) Dendrimers

  • Kim, Hye Ji;Oh, Seaung Youl
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.182-190
    • /
    • 2018
  • The objective of this work is to evaluate the effect of polyamidoamine (PAMAM) dendrimers on electroosmotic flow (EOF) through skin. The effect of size and concentration of dendrimer was studied, using generation 1, 4 and 7 dendrimer (G1, G4 and G7, respectively). As a marker molecule for the direction and magnitude of EOF, a neutral molecule, acetoaminophen (AAP) was used. The visualization of dendrimer permeation into the current conducting pore (CCP) of skin was made using G4-fluorescein isothiocyanate (FITC) conjugate and confocal microscopy. Without dendrimer, anodal flux of AAP was much higher than cathodal or passive flux. When G1 dendrimer was added, anodal flux decreased, presumably due to the decrease in EOF by the association of G1 dendrimer with net negative charge in CCP. As the generation increased, larger decrease in anodal flux was observed, and the direction of EOF was reversed. Small amount of methanol used for the preparation of dendrimer solution also contributed to the decrease in anodal flux of AAP. Cross-sectional view perpendicular to the skin surface by confocal laser scanning microscope (CLSM) study showed that G4 dendrimer-FITC conjugate (G4-FITC) can penetrate into the viable epidermis and dermis under anodal current. The permeation route seemed to be localized on hair follicle region. These results suggest that PAMAM dendrimers can permeate into CCP and change the magnitude and direction of EOF. Overall, we obtained a better understanding on the mechanistic insights into the electroosmosis phenomena and its role on flux during iontophoresis.

Synthesis, Spectral Characterization, Electron Microscopic Study and Influence on the Thermal Stability of Phosphorus-containing Dendrimer with a 4,4'-Sulphonyldiphenol at the Core

  • Dadapeer, Echchukattula;Rasheed, Syed;Raju, Chamarthi Naga
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.498-502
    • /
    • 2011
  • The divergent synthesis of novel phosphorus-containing dendrimer with 4,4'-sulphonyldiphenol at the core has been accomplished involving simple condensation reactions using $P(O)Cl_3$, $P(S)Cl_3$, 3-amino-phenol, 3-hydroxy-benzaldehyde, and 2-butyn 1, 4-diol. The final compound was a Schiff's base macromolecule possessing 4 imine bonds, 8 acetylenic bonds and 8 OH groups at the periphery. The structures of intermediate compounds were confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), LC-Mass and C, H, N analysis. The structure of the final dendrimer (5) was confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), MALDI-TOF-MS, and C, H, N analysis. The surface morphological characteristics of the final dendrimer were understood by Scanning Electronic Microscopic study (SEM). The thermal stability of the final dendrimer was studied by TGA/DTA analysis.

Spectrophotometric Determination of Maximum Loading Capacity of a Dendrimer

  • Youngjin Jeon
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.217-221
    • /
    • 2023
  • A series of hydrophobic dodecyl-terminated 6th-generation poly(amidoamine) dendrimer (H)-encapsulated cadmium sulfide ((CdS)n@H) nanoparticles in a co-solvent (toluene: methanol = 6.8: 3.2 v/v) are synthesized. The diameters of CdS nanoparticles within the dendrimer were estimated by analyzing the positions of the first excitonic absorption peaks of CdS in UV-vis spectra. The size of the CdS nanoparticle within the dendrimer shows a saturation value as the CdS/H ratio (n) increases, which is believed to be due to the limited physical size of the void cavity within the dendrimer. This simple and convenient method of estimating the saturation of the size of CdS in dendrimers may be useful in determining the maximum void space within other dendrimers under various solvent conditions.

Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films (기능성 덴드리머 박막의 광학적 거동 및 전기적 특성)

  • 박재철;정상범;권영수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.201-205
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films (기능성 덴드리머 박막의 광학적 거동 및 전기적 특성)

  • 박재철;정상범;권영수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.201-201
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

Streptomycin-anionic linear globular dendrimer G2: Novel antibacterial and anticancer agent

  • Javadi, Sahar;Ardestani, Mehdi Shafiee
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.241-248
    • /
    • 2019
  • Recent researches demonstrated well promising anticancer activities for antibiotics. Such effects would be significantly increased while nanoparticle based delivery systems were applied. In this study, the goal was aim to improve anticancer and antitoxic effects of Streptomycin by loading on special kind of dendrimer (anionic-linear-globular second generation). In the current study, Size and zeta potential as well as AFM techniques have been used to prove the fact that the loading was performed correctly. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the drug loaded on dendrimer nanoparticle were determined and compared with both of dendrimer alone and free drug with respect to staphylococcus aureus as the test microorganism. The anticancer activity among three groups including Streptomycin, Streptomycin -G2 dendrimer, and control was measured in vitro. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which loaded on Streptomycin was able to significantly improve the treatment efficacy over clinical Streptomycin alone with respect to proliferation assay. Maximal inhibitory concentration (IC50) was calculated to be $257{\mu}g/mL$ for streptomycin alone and $55{\mu}g/mL$ for Streptomycin -G2 dendrimer. In addition, Streptomycin -G2 dendrimer conjugate prevented the growth of MCF-7 cancerous cells in addition to enhance the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. Streptomycin -G2 dendrimer conjugate was able to increase Bcl-2/Bax ratio in a large scale compared with the control group and Streptomycin alone. Based on results a new drug formulation based nano-particulate was improved against S. aureus with sustained release and enhanced antibacterial activity as well as anticancer activity shown for functional cancer treatment with low side effects.

Electrical Properties of LB Films Using Dendritic Macromolecules Containing Pyridinealdoxime Functional Group (Pyridinealdoxime 기능기 그룹을 가진 덴드리틱 거대분자를 이용한 LB막의 전기적 특성)

  • 정상범;유승엽;박은미;김정균;박재철;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.761-763
    • /
    • 2001
  • Dendrimers represent a new class of synthetic macromolecules characterized by a regularly branched treelike structure. Dendrimer can be made with high regularity and controlled molecular weight. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. One of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a G4-48PyA dendrimer LB films containing 48 pyridinealdoxime functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. And we have studied the electrical properties of the ultra-thin dendrimer LB films. The electrical properties of the ultra-thin dendrimer LB films were investigated by studying the current-voltage(I-V) characteristics of metal/dendrimer LB films/metal (MIM) structure. And rectifying behavior of the devices was occurred in applied field.

  • PDF

Electrical Properties of G4-48PyP Dendrimer LB Films complex with Metal Ions (금속이온 착체에 의한 G4-48PyP 덴드리머 LB막의 전기적 특성)

  • Jung, S.B.;Yoo, S.Y.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.769-772
    • /
    • 2002
  • Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. And one of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a dendrimer LB films containing 48 pyridinepropanol functional end group. As the pyridinepropanol functional group could form a complex structure with metal ions. We investigated the surface activity of dendrimer films at air-water interface compared with pure dendrimer and its complex with $Fe^{2+}$ ions into subphase. We though that metal ions are contributed to networking or branching reaction between dendrimers. And we expected that it can result in the differences on the electrical properties. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage characteristics of metal dendrimer LB films/metal (MIM) structure.

  • PDF