Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films

기능성 덴드리머 박막의 광학적 거동 및 전기적 특성

  • 박재철 (영진전문대 전자정보계열) ;
  • 정상범 (동아대 전기공학과) ;
  • 권영수 (동아대 전기전자컴퓨터공학부)
  • Published : 2003.05.01

Abstract

We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

Keywords