• Title/Summary/Keyword: Demand-Capacity model

Search Result 334, Processing Time 0.021 seconds

A Study on Determination of Factory Production Capacity in the Supply Chain Considering Uncertain Demand (불확실한 수요를 고려한 공급사슬의 공장생산용량 결정에 관한 연구)

  • 지요한;임석진;김경섭
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.1
    • /
    • pp.35-48
    • /
    • 2003
  • This paper suggests the long-term strategy of the production distribution planning considering the capacity of factory production and the uncertain demand in a supply chain. This paper determines the near optimal capacity of factory production by using the advantages of mathematical and simulation models. Also, the relationship between the capacity from the suggested model and the strategy of production and distribution in a supply chain is studied. Arena is used for modeling and analysis.

  • PDF

Robust Capacity Planning in Network Coding under Demand Uncertainty

  • Ghasvari, Hossien;Raayatpanah, Mohammad Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2840-2853
    • /
    • 2015
  • A major challenge in network service providers is to provide adequate resources in service level agreements based on forecasts of future demands. In this paper, we address the problem of capacity provisioning in a network subject to demand uncertainty such that a network coded multicast is applied as the data delivery mechanism with limited budget to purchase extra capacity. We address some particular type of uncertainty sets that obtain a tractable constrained capacity provisioning problem. For this reason, we first formulate a mathematical model for the problem under uncertain demand. Then, a robust optimization model is proposed for the problem to optimize the worst-case system performance. The robustness and effectiveness of the developed model are demonstrated by numerical results. The robust solution achieves more than 10% reduction and is better than the deterministic solution in the worst case.

Genetic Algorithm for Capacity Expansion Planning Model of the Distribution Centers in a Distribution System (물류시스템에서 물류센터의 크기 확장계획모형에 대한 유전알고리듬)

  • Chang, Suk-Hwa;Kim, Jae-Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.2
    • /
    • pp.1-12
    • /
    • 2009
  • Distribution centers in a distribution system that consists of the distribution centers and retailers supplies products to retailers. At the present, although total capacity of the distribution centers are enough to supply total demand of retailers, capacity of the distribution centers need to be expanded to satisfy the demand of retailers in case that future demand of the retailers will be increased. Capacity expansion model in a distribution system is to determine the location and size of expansion distribution centers that minimize costs among given distribution centers. Transportation amount from distribution center to retailers also is determined. The costs factors are the capacity expansion costs of the distribution centers and the transportation costs from the distribution centers to the retailers. A model is formulated, and a genetic algorithm based solution procedure is developed. A numerical example is shown and the algorithm is analyzed through examples.

Traffic Analysis Model for Exit Ramp Congestion at Urban Freeway (고속도로 진출램프 대기행렬 발생 현상 분석모형 개발)

  • Jeon, Jae-Hyeon;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.30-40
    • /
    • 2010
  • The freeway congestion is largely generated by a mainline spillover of the exit ramp queue. So it is necessary to study for modeling of the phenomenon and applying the model. In this study, the authors evaluated applicability of the Supply-Demand model, which can express traffic flow for the freeway by applying flexibly supply and demand curves for capacity of the freeway. First the authors proposed methods processing input data required in the Supply-Demand model, such as sending & receiving functions and time-varying capacity constraints for the freeway mainline. After modeling the Supply-Demand application model, the authors applied the model to the site including congested Hongeun exit ramp in Seoul Ring-road, and improved the model by adjusting application techniques and calibrating parameters. The result of the analysis showed that the Supply-Demand model yielded a queuing pattern and queue location similar to them observed in the field data, and applicability of the Supply-Demand model was varified.

A Train Seat Capacity Distribution Model to Multiple Origin-Destinations (다수의 기종점에 대한 열차의 좌석용량배분모형)

  • 김성호;오석문
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • In this paper we present a nonlinear programming model for the train seat capacity distribution with a numerical example. The model finds the optimal capacity distribution methods which minimize the sum of the differences between the demands and the seat capacities. Also the model provides the information on the degree of the discrepancy between the demand and the seat capacities. One can use the model as a tool for planning train seat capacity planning.

PORT EXPANSION SIMULATION MODEL

  • 노용덕
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.1-1
    • /
    • 1992
  • This paper presents a user-oriented port expansion simulation model that determines the future economic port capacity to meet the projected demand. The model consists of two parts; a physical impact simulation, and an economic impact simulation. The first part of the model simulates the effects caused by the port capacity expansion. The second part evaluates the port economics due to changes in the port capacity. The model was validated by applying it to the actual port expansion followed at the Port of Mobile, Alabama. A case study is then presented to demonstrate the capacity of the model with a coal handling port, the McDuffie Terminals at the Port of Mobile.

  • PDF

Integrated Traffic Management Strategy on Expressways Using Mainline Metering and Ramp Metering (본선미터링과 램프미터링을 이용한 고속도로 통합교통관리 전략)

  • Jeong, Youngje;Kim, Youngchan;Lee, Seungjun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2013
  • This research proposed integrated expressway traffic management strategy using ramp metering and toll mainline metering. This research suggested a traffic signal optimization model for integrated operation of ramp and mainline metering based on Demand-Capacity Model that is used to optimize allowable input volume for ramp metering in FREQ model. The objective function of this model is sectional throughput volume maximization, and this model can calculate optimal signal timings for mainline metering and ramp metering. This study conducted an effectiveness analysis of integrated metering strategy using PARAMICS and its API. It targeted Seoul's Outer Ring Expressway between Gimpo and Siheung toll gate. As a simulation result, integrated operation of mainline and ramp metering provided more smooth traffic flow, and throughput volume of mainline increased to 14% in congested section. In addition, a queue of 400 meter was formed at metering point of toll gate. This research checked that integrated traffic management strategy facilitates more efficient traffic operation of mainline and ramp from diffused traffic congestion.

A Nonlinear Programming Model for the Solution of the Train Seat Capacity Distribution Problem (열차의 좌석용량 배분을 위한 비선형계획모형)

  • 김성호;홍순흠
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.72-79
    • /
    • 2001
  • In this paper we present a nonlinear programming model for the solution of the train seat capacity distribution problem (TSCDP) with a numerical example. The TSCDP model finds the optimal capacity distribution methods which minimize the sum of the differences between the demands and the seat capacities. Also the TSCDP provides the information on the degree of the discrepancy between the demand and the seat capacities. One can use the TSCDP model as a tool for planning train seat capacity planning.

  • PDF

A mechanical model for the seismic vulnerability assessment of old masonry buildings

  • Pagnini, Luisa Carlotta;Vicente, Romeu;Lagomarsino, Sergio;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.25-42
    • /
    • 2011
  • This paper discusses a mechanical model for the vulnerability assessment of old masonry building aggregates that takes into account the uncertainties inherent to the building parameters, to the seismic demand and to the model error. The structural capacity is represented as an analytical function of a selected number of geometrical and mechanical parameters. Applying a suitable procedure for the uncertainty propagation, the statistical moments of the capacity curve are obtained as a function of the statistical moments of the input parameters, showing the role of each one in the overall capacity definition. The seismic demand is represented by response spectra; vulnerability analysis is carried out with respect to a certain number of random limit states. Fragility curves are derived taking into account the uncertainties of each quantity involved.

Storage Capacity Estimation for Automated Storage/Retrieval Systems under Stochastic Demand (확률적 수요하에서의 자동창고의 필요 저장능력 추정)

  • Cho, Myeon-Sig;Bozer, Yavuz-A.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.169-175
    • /
    • 2001
  • Most of studies on automated storage/retrieval (AS/R) system assumed that storage capacity is given, although it is a very important decision variable in the design phase. We propose a simple algorithm to estimate the required storage capacity, i.e., number of aisles and number of openings in vertical and horizontal directions in each aisle, of an AS/R system under stochastic demand, in which storage requests occur endogenously and exogenously while the retrieval requests occur endogenously from the machines. Two design criteria, maximum permissible overflow probability and maximum allowable storage/retrieval (S/R) machine utilization, are used to compute the storage capacity. This model can be effectively used in the design phase of new AS/R systems.

  • PDF