The majority of the natural gas demand in South Korea is mainly determined by the heating demand. Accordingly, there is a distinct seasonality in which the gas demand increases in winter and decreases in summer. Moreover, the degree of sensitiveness to temperature on gas demand has changed over time. This study firstly introduces changing temperature response function (TRF) to capture effects of changing seasonality. The temperature effect (TE), estimated by integrating temperature response function with daily temperature density, represents for the amount of gas demand change due to variation of temperature distribution. Also, this study presents an innovative way in forecasting daily temperature density by employing functional principal component analysis based on daily max/min temperature forecasts for the five big cities in Korea. The forecast errors of the temperature density and gas demand are decreased by 50% and 80% respectively if we use the proposed forecasted density rather than the average daily temperature density.
Kim, Hyunsu;Kim, Yoo-Keun;Song, Sang-Keun;Jeong, Ju-Hee;Son, Go-Eun;Kim, Dong-Sik;Kim, Hyung-Sop;Kim, Ji-Won
Journal of Environmental Science International
/
v.22
no.4
/
pp.481-492
/
2013
In this study, the use survey of domestic and international weather information on coastal regions and the demand survey (e.g. general and in-depth surveys) for customer needs with coastal industries were carried out to design customized coastal weather contents. The general demand survey showed that most of the customers working in the coastal industries were interested in a short-term forecast, such as a general weather outlook (approximately 29% of the total respondents) and typhoon information (19%), and they preferred to be given the forecast information from new media such as the internet web-pages (36%) and mobile utilities (23%) rather than old media such as TV (16%) and radio (11%). In addition, only 31% of the total respondents were found to be satisfied with the use of the current coastal weather service. This low percentage might mainly be a result of lack of information accuracy (about 64%) and diversity (28%). From in-depth survey with site visiting, the need of coastal weather contents, such as weather elements, data form, a tool of communication, and forecast interval, differed with the working stages in three coastal industries (e.g. shipbuilding, maritime trade, and passenger transport industries).
Accurate demand forecasting is a crucial component in revenue management(RM). The booking data of departed flights is used to forecast the demand for future departing flights; however, some booking requests that were denied were omitted in the departed flights data. Denied booking requests can be interpreted as censored in statistics. Thus, unconstraining demand is an important issue to forecast the true demands of future flights. Several unconstraining methods have been introduced and a method based on expectation maximization is considered superior. In this study, we propose a new unconstraining method based on a regression model that can entertain such censored data. Through a simulation study, the performance of the proposed method was evaluated with two representative unconstraining methods widely used in RM.
Journal of Korean Society of Industrial and Systems Engineering
/
v.35
no.1
/
pp.24-31
/
2012
This study is designed to predict the overall electric power load, to apply the method of time sharing and to reduce simultaneous load factor of electric power when authorized by user entering demand plans and using schedules into the user's interface for a certain period of time. This is about smart grid, which reduces electric power load through simultaneous load factor of electric power reduction system supervision agent. Also, this study has the following characteristics. First, it is the user interface which enables authorized users to enter and send/receive such data as demand plan and using schedule for a certain period of time. Second, it is the database server, which collects, classifies, analyzes, saves and manages demand forecast data for a certain period of time. Third, is the simultaneous load factor of electric power control agent, which controls usage of electric power by getting control signal, which is intended to reduce the simultaneous load factor of electric power by the use of the time sharing control system, form the user interface, which also integrate and compare the data which were gained from the interface and the demand forecast data of the certain period of time.
Im, Su Deok;Jo, Jung Jae;Hwang, Jin Su;Jo, Yong Hwan
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.12A
/
pp.2025-2033
/
1999
In this paper, we forecast launching time of the commercial IMT-2000 service as feb. 2001, according to expert’s opinion, and most of they forecast rapid evolution. And, we propose two different models according to two cases for competition power of price for IMT-2000 service subscriber demand forecasting. In this paper, we combine the expert’s opinion method with the growth curve model for demand forecasting for new products in order to reduce error of the demand forecasting that haven’t past references. The estimation of needed coefficients for each growth curve model is based on experts’ subjective opinions.
Journal of the military operations research society of Korea
/
v.30
no.2
/
pp.96-107
/
2004
This paper deals with $\ulcorner$Requirement Decision Model for Repair Parts supplied by the Government$\lrcorner$ which is to reduce Aircraft Contract Maintenance Cost. It aims to find solutions to the fundamental problems of the Aircraft Contract Maintenance System. Under the current Aircraft Contract Maintenance System, it is hard to forecast the exact demand of repair parts, so support rate of Repair Parts supplied by the Government is restricted under 50 percent. It is inevitable to purchase Repair Parts from the firm with much higher price than those of Government source. However, absence of fixed demand pattern makes it difficult to improve accuracy of demand forecast. As a solution to these problems, this model prevents a cost increase due to the unit price difference between Repair Parts supplied by the Government and Repair Parts purchased by the Firm. It also reflects demand characteristics of each repair part, and prevents continual stock increase by setting an upper limit on the amount of Repair Parts supplied by the Government. The effectiveness of this model is verified by empirical analysis using the latest raw data. By applying this model to real situation, we expect to reduce about 4 billion won every year.
The efficiency of fabrication (fab) operation is one of the key factors in order for a semiconductor manufacturing company to stay competitive. Optimization of manpower and forecasting manpower needs in a modern fab is an essential part of the future strategic planing and a very important to the operational efficiency. As the semiconductor manufacturing technology has entered the 8-inch wafer era, the complexity of fab operation increases with the increase of wafer size. The wafer handling method has evolved from manual mode in 6-inch wafer fab to semi-automated or fully automated factory in 8-inch and 12-inch wafer fab. The distribution of manpower requirement in each specialty varied as the trend of fab operation goes for downsizing manpower with automation and outsourcing maintenance work. This paper is to study the specialty distribution of manpower from the requirement in a typical 6-inch, 8-inch to 12-inch wafer fab. The human resource planning in today’s fab operation shall consider many factors, which include the stability of technical talents. This empirical study mainly focuses on the human resource planning, the manpower distribution of specialty structure and the forecast model of internal demand/supply in current semiconductor manufacturing company. Considering the market fluctuation with the demand of varied products and the advance in process technology, the study is to design a headcount forecast model based on current manpower planning for direct labour (DL) and indirect labour (IDL) in Taiwan’s fab. The model can be used to forecast the future manpower requirement on each specialty for the strategic planning of human resource to serve the development of the industry.
The purpose of this study is to analyze and to forecast the long-term domestic demand and export demand for timber in Korea by regression models with time series data during 1962~1978. The method applied in this study was econometric analysis using Time Series Processor. The most important explanatory variables of timber demand were found to be the production activities of wood products industries to the prices of substitute goods. On the basis of the long-term forecast made according to the guidelines of the Fifth Five-Year Plan. According to the projection, domestic timber demand is projected at 8 million cubic meters in 1987 and 10.6 million cubic meters in 1991. On the other hand, the total demand (domestic demand plus export demand) for timber is projected 21.4 million cubic meters in 1987 and 27.2 million cubic meters in 1991.
Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.
This study examined the current status of the number of ships and marine officers in the coastal shipping in order to successfully solve the problem of the shortage of manpower. Then it forecast the number of costal ships by ship size and the demand of coastal marine officers by applying the crew quota of the Ship Personnel Act. In addition, The supply of manpower was predicted using the Markov model, reflecting the number of turnover and retirements by year, as well as the number of new entrants and incomer from ocean-going shipping. As a result of forecasts, the demand for coastal marine officers is forecast to increase from 6,057 in 2023 to 7,079 in 2030, and the supply is forecast to decrease from 5,771 in 2023 to 5,130 in 2030, showing that the manpower of shortage is worsening. This study analyzed the problem of the shortage of lower-level licensed coastal marine officers and objectively forecast the demand and supply of manpower through quantitative analysis. In order to resolve the manpower shortage, it was proposed to expand the training and supply of 5th and 6th grade low-level licensed coastal marine officers. This study will be able to provide useful data to solve the problem of shortage of manpower for coastal shipping.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.