• Title/Summary/Keyword: Demand forecast

Search Result 504, Processing Time 0.029 seconds

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.

Forecasting of Yeongdeok Tourist by Seasonal ARIMA Model (계절 아리마 모형을 이용한 관광객 예측 -경북 영덕지역을 대상으로-)

  • Son, Eun-Ho;Park, Duk-Byeong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.19 no.2
    • /
    • pp.301-320
    • /
    • 2012
  • The study uses a seasonal ARIMA model to forecast the number of tourists of Yeongdeok in an uni-variable time series. The monthly data for time series were collected ranging from 2006 to 2011 with some variation between on-season and off-season tourists in Yeongdeok county. A total of 72 observations were used for data analysis. The forecast multiplicative seasonal ARIMA(1,0,0)$(0,1,1)_{12}$ model was found the most appropriate one. Results showed that the number of tourists was 10,974 thousands in 2012 and 13,465 thousands in 2013, It was suggested that the grasping forecast model is very important in respect of how experts in tourism development in Yeongdeok county, policy makers or planners would establish strategies to allocate service in Yeongdeok tourist destination and provide tourism facilities efficiently.

Forecasting uranium prices: Some empirical results

  • Pedregal, Diego J.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1334-1339
    • /
    • 2020
  • This paper presents an empirical and comprehensive forecasting analysis of the uranium price. Prices are generally difficult to forecast, and the uranium price is not an exception because it is affected by many external factors, apart from imbalances between demand and supply. Therefore, a systematic analysis of multiple forecasting methods and combinations of them along repeated forecast origins is a way of discerning which method is most suitable. Results suggest that i) some sophisticated methods do not improve upon the Naïve's (horizontal) forecast and ii) Unobserved Components methods are the most powerful, although the gain in accuracy is not big. These two facts together imply that uranium prices are undoubtedly subject to many uncertainties.

Unit Commitment for an Uncertain Daily Load Profile (불확실한 부하곡선에 대한 발전기 기동정지계획)

  • 박정도;박상배
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.6
    • /
    • pp.334-339
    • /
    • 2004
  • In this study, a new UC (Unit Commitment) algorithm is proposed to consider the uncertainty of a daily load profile. The proposed algorithm calculates the UC results with the lower load level than the one generated by the conventional load forecast and the more hourly reserve allocation. In case of the worse load forecast, the deviation of the conventional UC solution can be overcome with the proposed method. The proposed method is tested with sample systems, which shows that the new UC algorithm yields completely feasible solution even though the worse load forecast is applied. Also, the effects of the uncertain hourly load demand are statistically analyzed especially by the consideration of the average over generation and the average under generation. Finally, it is shown that independent power producers participating in electricity spot-markets can establish bidding strategies by means of the statistical analysis. Therefore, it is expected that the proposed method can be used as the basic guideline for establishing bidding strategies under the deregulation power pool.

Unit Commitment for an Uncertain Daily Load Profile

  • Park Jeong-Do
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.16-21
    • /
    • 2005
  • In this study, a new Unit Commitment (UC) algorithm is proposed to consider the uncertainty of a daily load profile. The proposed algorithm calculates the UC results with a lower load level than that generated by the conventional load forecast method and the greater hourly reserve allocation. In case of the worst load forecast, the deviation of the conventional UC solution can be overcome with the proposed method. The proposed method is tested with sample systems, which indicates that the new UC algorithm yields a completely feasible solution even when the worst load forecast is applied. Also, the effects of the uncertain hourly load demand are statistically analyzed, particularly by the consideration of the average over generation and the average under generation. Finally, it is shown that independent power producers participating in electricity spot-markets can establish bidding strategies by means of the statistical analysis. Therefore, it is expected that the proposed method can be used as the basic guideline for establishing bidding strategies under the deregulation power pool.

Dynamic Reserve Estimating Method with Consideration of Uncertainties in Supply and Demand (수요와 공급의 불확실성을 고려한 시간대별 순동예비력 산정 방안)

  • Kwon, Kyung-Bin;Park, Hyeon-Gon;Lyu, Jae-Kun;Kim, Yu-Chang;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1495-1504
    • /
    • 2013
  • Renewable energy integration and increased system complexities make system operator maintain supply and demand balance harder than before. To keep the grid frequency in a stable range, an appropriate spinning reserve margin should be procured with consideration of ever-changing system situation, such as demand, wind power output and generator failure. This paper propose a novel concept of dynamic reserve, which arrange different spinning reserve margin depending on time. To investigate the effectiveness of the proposed dynamic reserve, we developed a new short-term reliability criterion that estimates the probability of a spinning reserve shortage events, thus indicating grid frequency stability. Uncertainties of demand forecast error, wind generation forecast error and generator failure have been modeled in probabilistic terms, and the proposed spinning reserve has been applied to generation scheduling. This approach has been tested on the modified IEEE 118-bus system with a wind farm. The results show that the required spinning reserve margin changes depending on the system situation of demand, wind generation and generator failure. Moreover the proposed approach could be utilized even in case of system configuration change, such as wind generation extension.

Demand Forecasting with Discrete Choice Model Based on Technological Forecasting

  • 김원준;이정동;김태유
    • Proceedings of the Technology Innovation Conference
    • /
    • 2003.02a
    • /
    • pp.173-190
    • /
    • 2003
  • Demand forecasting is essential in establishing national and corporate strategy as well as the management of their resource. We forecast demand for multi-generation product using discrete choice model combining diffusion model The discrete choice model generally captures consumers'valuation of the product's qualify in the framework of a cross-sectional analysis. We incorporate diffusion effects into a discrete choice model in order to capture the dynamics of demand for multi-generation products. As an empirical application, we forecast demand for worldwide DRAM (dynamic random access memory) and each of its generations from 1999 to 2005. In so doing, we use the method of 'Technological Forecasting'for DRAM Density and Price of the generations based on the Moore's law and learning by doing, respectively. Since we perform our analysis at the market level, we adopt the inversion routine in using the discrete choice model and find that our model performs well in explaining the current market situation, and also in forecasting new product diffusion in multi-generation product markets.

  • PDF

Forecasting methodology of future demand market (미래 수요시장의 예측 방법론)

  • Oh, Sang-young
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.205-211
    • /
    • 2020
  • The method of predicting the future may be predicted by technical characteristics or technical performance. Therefore, technology prediction is used in the field of strategic research that can produce economic and social benefits. In this study, we predicted the future market through the study of how to predict the future with these technical characteristics. The future prediction method was studied through the prediction of the time when the market occupied according to the demand of special product. For forecasting market demand, we proposed the future forecasting model through comparison of representative quantitative analysis methods such as CAGR model, BASS model, Logistic model and Gompertz Growth Curve. This study combines Rogers' theory of innovation diffusion to predict when products will spread to the market. As a result of the research, we developed a methodology to predict when a particular product will mature in the future market through the spread of various factors for the special product to occupy the market. However, there are limitations in reducing errors in expert judgment to predict the market.

Long-term Energy Demand Forecast in Korea Using Functional Principal Component Analysis (함수 주성분 분석을 이용한 한국의 장기 에너지 수요예측)

  • Choi, Yongok;Yang, Hyunjin
    • Environmental and Resource Economics Review
    • /
    • v.28 no.3
    • /
    • pp.437-465
    • /
    • 2019
  • In this study, we propose a new method to forecast long-term energy demand in Korea. Based on Chang et al. (2016), which models the time varying long-run relationship between electricity demand and GDP with a function coefficient panel model, we design several schemes to retain objectivity of the forecasting model. First, we select the bandwidth parameters for the income coefficient based on the out-of-sample forecasting performance. Second, we extend the income coefficient using the functional principal component analysis method. Third, we proposed a method to reflect the elasticity change patterns inherent in Korea. In the empirical analysis part, we forecasts the long-term energy demand in Korea using the proposed method to show that the proposed method generates more stable long term forecasts than the existing methods.

Quantifying the Bullwhip Effect in a Supply Chain Considering Seasonal Demand (공급사슬에서 계절적 수요를 고려한 채찍효과 측도의 개발)

  • Cho, Dong-Won;Lee, Young-Hae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.3
    • /
    • pp.203-212
    • /
    • 2009
  • The bullwhip effect refers to the phenomenon where demand variability is amplified when one moves upward a supply chain. In this paper, we exactly quantify the bullwhip effect for cases of seasonal demand processes in a two-echelon supply chain with a single retailer and a single supplier. In most of the previous research, some measures of performance for the bullwhip effect are developed for cases of non-seasonal demand processes. The retailer performs demand forecast with a multiplicative seasonal mixed model by using the minimum mean square error forecasting technique and employs a base stock policy. With the developed bullwhip effect measure, we investigate the impact of seasonal factor on the bullwhip effect. Then, we prove that seasonal factor plays an important role on the occurrence of the bullwhip effect.