A Study on the Characteristics of Enterprise R&D Capabilities Using Data Mining (데이터마이닝을 활용한 기업 R&D역량 특성에 관한 탐색 연구)
-
- Journal of Intelligence and Information Systems
- /
- v.27 no.1
- /
- pp.1-21
- /
- 2021
As the global business environment changes, uncertainties in technology development and market needs increase, and competition among companies intensifies, interests and demands for R&D activities of individual companies are increasing. In order to cope with these environmental changes, R&D companies are strengthening R&D investment as one of the means to enhance the qualitative competitiveness of R&D while paying more attention to facility investment. As a result, facilities or R&D investment elements are inevitably a burden for R&D companies to bear future uncertainties. It is true that the management strategy of increasing investment in R&D as a means of enhancing R&D capability is highly uncertain in terms of corporate performance. In this study, the structural factors that influence the R&D capabilities of companies are explored in terms of technology management capabilities, R&D capabilities, and corporate classification attributes by utilizing data mining techniques, and the characteristics these individual factors present according to the level of R&D capabilities are analyzed. This study also showed cluster analysis and experimental results based on evidence data for all domestic R&D companies, and is expected to provide important implications for corporate management strategies to enhance R&D capabilities of individual companies. For each of the three viewpoints, detailed evaluation indexes were composed of 7, 2, and 4, respectively, to quantitatively measure individual levels in the corresponding area. In the case of technology management capability and R&D capability, the sub-item evaluation indexes that are being used by current domestic technology evaluation agencies were referenced, and the final detailed evaluation index was newly constructed in consideration of whether data could be obtained quantitatively. In the case of corporate classification attributes, the most basic corporate classification profile information is considered. In particular, in order to grasp the homogeneity of the R&D competency level, a comprehensive score for each company was given using detailed evaluation indicators of technology management capability and R&D capability, and the competency level was classified into five grades and compared with the cluster analysis results. In order to give the meaning according to the comparative evaluation between the analyzed cluster and the competency level grade, the clusters with high and low trends in R&D competency level were searched for each cluster. Afterwards, characteristics according to detailed evaluation indicators were analyzed in the cluster. Through this method of conducting research, two groups with high R&D competency and one with low level of R&D competency were analyzed, and the remaining two clusters were similar with almost high incidence. As a result, in this study, individual characteristics according to detailed evaluation indexes were analyzed for two clusters with high competency level and one cluster with low competency level. The implications of the results of this study are that the faster the replacement cycle of professional managers who can effectively respond to changes in technology and market demand, the more likely they will contribute to enhancing R&D capabilities. In the case of a private company, it is necessary to increase the intensity of input of R&D capabilities by enhancing the sense of belonging of R&D personnel to the company through conversion to a corporate company, and to provide the accuracy of responsibility and authority through the organization of the team unit. Since the number of technical commercialization achievements and technology certifications are occurring both in the case of contributing to capacity improvement and in case of not, it was confirmed that there is a limit in reviewing it as an important factor for enhancing R&D capacity from the perspective of management. Lastly, the experience of utility model filing was identified as a factor that has an important influence on R&D capability, and it was confirmed the need to provide motivation to encourage utility model filings in order to enhance R&D capability. As such, the results of this study are expected to provide important implications for corporate management strategies to enhance individual companies' R&D capabilities.
With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.
Digital content makes big changes to our daily lives while bringing opportunities and challenges for companies. Creative firms integrate pictures, texts, videos, audios, and data by digitalization to develop new products or services and create digital experiences to promote their brands. Most articles on digital content contribute to the basic concept or development of marketing it in literature. Actually, compared with traditional value chains for common products or services, the digital content industry seems to have more potential value. Because quite a bit of digital content is free to the consumer, price is not necessarily perceived as an indicator of the quality or value of information (Rowley 2008). It becomes evident that a current theme in digital content is the issue of "value," and research on customers' perceived value of digital content is a necessity. This article argues that experiential value has an advantage in customers' evaluations of digital content. Two different but related contributions to the understanding of "value" of digital content are made here. First, based on the comparison of digital content with products and services, the article proposes two key characteristics that make experiential strategy available for digital content: intangibility and near-zero reproduction cost. On top of that, based on the discussion of the gap between company's idealized value and customer's perceived value, this article emphasizes that digital content prices and pricing of digital content is different from products and services. As a result of intangibility, prices may not reflect customer value. Moreover, the cost of digital content in the development stage may be very high while reproduction costs shrink dramatically. Moreover, because of the value gap mentioned before, the pricing polices vary for different digital contents. For example, flat price policy is generally used for movies and music (Magiera 2001; Netherby 2002), while for continuous demand, digital content such as online games and anti-virus programs involves a more complicated matter of utility and competitive price levels. Digital content companies have to explore various kinds of strategies to overcome this gap. Rethinking marketing solutions such as advertisements, images, and word-of-mouth and their effect on customers' perceived value becomes essential. China's digital content industry is becoming more and more globalized and drawing special attention from different countries and regions that have respective competitive advantages. The 2008-2009 Annual Report on the Development of China's Digital Content Industry (CCIDConsulting 2009) indicates that, with the driven power of domestic demand and governmental policy support, the country's digital content industry maintained a fast growth of some 30 percent in 2008, obviously indicating the initial stage of industry expansion. In China, anti-virus programs and other software programs which need to be updated use a quarter-based pricing policy. Customers can download a trial version for free and use it for six months or a year. If they want to use it longer, continuous payment is needed. They examine the excellence of the digital content during this trial period and decide whether to pay for continued usage. For China’s music and movie industries, as a result of initial development, experiential strategy has not been much applied, even though firms in other countries find the trial experience and explore important strategies(such as customers listening to music for several seconds for free before downloading it). For the above reasons, anti-virus program may be a representative for digital content industry in China and an exploratory study of the advantage of experiential value in customer's perceived value of digital content is done in the anti-virus market of China. In order to enhance the reliability of the survey data, this study focused on people who were experienced users of anti-virus programs. The empirical results revealed that experiential value has a positive effect on customers' perceived value of digital content. In other words, because digital content is intangible and the reproduction costs are nearly zero, customers' evaluations are based heavily on their experience. Moreover, image and word-of-mouth do not have a positive effect on perceived value, only on experiential value. That is to say, a digital content value chain is different from that of a general product or service. Experiential value has a notable advantage and mediates the effect of image and word-of-mouth on perceived value. The results of this study help provide an understanding of why free digital content downloads exist in developing countries. Customers can perceive the value of digital content only by using and experiencing it. This is also why such governments support the development of digital content. Other developing countries whose digital content business is also in the beginning stage can make use of the suggestions here. Moreover, based on the advantage of experiential strategy, companies should make more of an effort to invest in customers' experience. As a result of the characteristics and value gap of digital content, customers perceive more value in the intangible digital content only by experiencing what they really want. Moreover, because of the near-zero reproduction costs, companies can perhaps use experiential strategy to enhance customer understanding of digital content.
Agriculture is a primary industry that influenced by the weather or meterological factors more than other industry. Global warming and worldwide climate changes, and unusual weather phenomena are fatal in agricultural industry and human life. Therefore, many previous studies have been made to find the relationship between weather and the productivity of agriculture. Meterological factors also influence on the distribution of agricultural product. For example, price of agricultural product is determined in the market, and also influenced by the weather of the market. However, there is only a few study was made to find this link. The objective of this study is to investigate the effects of meterological factors on the distribution of agricultural products, focusing on the distribution of chinese cabbages. Chinese cabbage is a main ingredient of Kimchi, and basic essential vegetable in Korean dinner table. However, the production of chinese cabbages is influenced by weather and very fluctuating so that the variation of its price is so unstable. Therefore, both consumers and farmers do not feel comfortable at the unstable price of chinese cabbages. In this study, we analyze the real transaction data of chinese cabbage in wholesale markets and meterological factors depending on the variety and geography. We collect and analyze data of meterological factors such as temperatures, humidity, cloudiness, rainfall, snowfall, wind speed, insolation, sunshine duration in producing and consuming region of chinese cabbages. The result of this study shows that the meterological factors such as temperature and humidity significantly influence on the volume and price of chinese cabbage transaction in wholesale market. Especially, the weather of consuming region has greater correlation effects on transaction than that of producing region in all types of chinese cabbages. Among the whole agricultural lifecycle of chinese cabbages, 'seeding - harvest - shipment - wholesale', meterological factors such as temperature and rainfall in shipment and wholesale period are significantly correlated with transaction volume and price of crops. Based on the result of correlation analysis, we make a regression analysis to verify the meterological factors' effects on the volume and price of chines cabbage transaction in wholesale market. The results of stepwise regression analysis are shown in