• Title/Summary/Keyword: Demand data

Search Result 5,204, Processing Time 0.03 seconds

Modeling Demand for Rural Settlement of Urban Residents (도시민의 농촌이주 수요모형 분석: 정착자금 지원효과를 중심으로)

  • Lee, Hee-Chan
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.2
    • /
    • pp.97-110
    • /
    • 2009
  • The objective of this research was to develop a rural settlement demand model to analyze the determinants of settlement demand of urban residents. The point aimed at from model development was deriving stated preference of potential consumers towards rural settlement through setting a hypothetical market, and using settlement subsidy as a surrogate variable for price in the demand model. The adequate demand model deducted from hypothetical market data was derived from the basis of Hanemann's utility difference theory. In the rural settlement demand model, willingness to accept was expressed by a function of settlement subsidy. Data utilized in the analysis was collected from surveys of households nationwide. According to inferred results of the demand model, settlement subsidy had a significant influence on increasing demand for rural settlement. A significant common element was found among variables affecting demand increase through demand curve shift. The majority group of those with high rural settlement demand sought agricultural activity as their main motive, due to harsh urban environments aggravated by unstable job market conditions. Subsequently, restriction of income opportunities in rural areas does not produce an entrance barrier for potential rural settlers. Moreover, this argument could be supported by the common trend of those with high rural settlement demand generally tending to have low incomes. Due to such characteristics of concerned groups of rural settlement demand, they tended to react susceptibly to the subsidy provided by the government and local autonomous entities.

Clustering of Seoul Public Parking Lots and Demand Prediction (서울시 공영주차장 군집화 및 수요 예측)

  • Jeongjoon Hwang;Young-Hyun Shin;Hyo-Sub Sim;Dohyun Kim;Dong-Guen Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.497-514
    • /
    • 2023
  • Purpose: This study aims to estimate the demand for various public parking lots in Seoul by clustering similar demand types of parking lots and predicting the demand for new public parking lots. Methods: We examined real-time parking information data and used time series clustering analysis to cluster public parking lots with similar demand patterns. We also performed various regression analyses of parking demand based on diverse heterogeneous data that affect parking demand and proposed a parking demand prediction model. Results: As a result of cluster analysis, 68 public parking lots in Seoul were clustered into four types with similar demand patterns. We also identified key variables impacting parking demand and obtained a precise model for predicting parking demands. Conclusion: The proposed prediction model can be used to improve the efficiency and publicity of public parking lots in Seoul, and can be used as a basis for constructing new public parking lots that meet the actual demand. Future research could include studies on demand estimation models for each type of parking lot, and studies on the impact of parking lot usage patterns on demand.

Forecast and Demand Analysis of Oyster as Kimchi's Ingredients (김장굴의 수요 분석 및 예측)

  • Nam, Jong-Oh;Nho, Seung-Guk
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.2
    • /
    • pp.69-83
    • /
    • 2011
  • This paper estimates demand functions of oyster as Kimchi's ingredients of capital area, other areas excluding a capital area, and a whole area in Korea to forecast its demand quantities in 2011~2015. To estimate oyster demand function, this paper uses pooled data produced from Korean housewives over 30 years old in 2009 and 2010. Also, this paper adopts several econometrics methods such as Ordinary Least Squares and Feasible Generalized Least Squares. First of all, to choose appropriate variables of oyster demand functions by area, this paper carries out model's specification with joint significance test. Secondly, to remedy heteroscedasticity with pooled data, this paper attempts residual plotting between estimated squared residuals and estimated dependent variable and then, if it happens, undertakes White test to care the problem. Thirdly, to test multicollinearity between variables with pooled data, this paper checks correlations between variables by area. In this analysis, oyster demand functions of a capital area and a whole area need price of the oyster, price of the cabbage for Gimjang, and income as independent variables. The function on other areas excluding a capital area only needs price of the oyster and income as ones. In addition, the oyster demand function of a whole area needed White test to care a heteroscedasticity problem and demand functions of the other two regions did not have the problem. Thus, first model was estimated by FGLS and second two models were carried out by OLS. The results suggest that oyster demand quantities per a household as Kimchi's ingredients are going to slightly increase in a capital area and a whole area, but slightly decrease in other areas excluding a capital area in 2011~2015. Also, the results show that oyster demand quantities as kimchi's ingredients for total household targeting housewives over 30 years old are going to slightly increase in three areas in 2011~2015.

Real-time Energy Demand Prediction Method Using Weather Forecasting Data and Solar Model (기상 예보 데이터와 일사 예측 모델식을 활용한 실시간 에너지 수요예측)

  • Kwak, Young-Hoon;Cheon, Se-Hwan;Jang, Cheol-Yong;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.310-316
    • /
    • 2013
  • This study was designed to investigate a method for short-term, real-time energy demand prediction, to cope with changing loads for the effective operation and management of buildings. Through a case study, a novel methodology for real-time energy demand prediction with the use of weather forecasting data was suggested. To perform the input and output operations of weather data, and to calculate solar radiation and EnergyPlus, the BCVTB (Building Control Virtual Test Bed) was designed. Through the BCVTB, energy demand prediction for the next 24 hours was carried out, based on 4 real-time weather data and 2 solar radiation calculations. The weather parameters used in a model equation to calculate solar radiation were sourced from the weather data of the KMA (Korea Meteorological Administration). Depending on the local weather forecast data, the results showed their corresponding predicted values. Thus, this methodology was successfully applicable to anywhere that local weather forecast data is available.

An Exploratory Study on the New Product Demand Curve Estimation Using Online Auction Data

  • Shim Seon-Young;Lee Byung-Tae
    • Management Science and Financial Engineering
    • /
    • v.11 no.3
    • /
    • pp.125-136
    • /
    • 2005
  • As the importance of time-based competition is increasing, information systems for supporting the immediate decision making is strongly required. Especially high -tech product firms are under extreme pressure of rapid response to the demand side due to relatively short life cycle of the product. Therefore, the objective of our research is proposing a framework of estimating demand curve based on e-auction data, which is extremely easy to access and well reflect the limited demand curve in that channel. Firstly, we identify the advantages of using e-auction data for full demand curve estimation and then verify it using Agent-Eased-Modeling and Tobin's censored regression model.

Short-term Load Forecasting of Using Data refine for Temperature Characteristics at Jeju Island (온도특성에 대한 데이터 정제를 이용한 제주도의 단기 전력수요예측)

  • Kim, Ki-Su;Ryu, Gu-Hyun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1695-1699
    • /
    • 2009
  • This paper analyzed the characteristics of the demand of electric power in Jeju by year, day. For this analysis, this research used the correlation between the changes in the temperature and the demand of electric power in summer, and cleaned the data of the characteristics of the temperatures, using the coefficient of correlation as the standard. And it proposed the algorithm of forecasting the short-term electric power demand in Jeju, Therefore, in the case of summer, the data by each cleaned temperature section were used. Based on the data, this paper forecasted the short-term electric power demand in the exponential smoothing method. Through the forecast of the electric power demand, this paper verified the excellence of the proposed technique by comparing with the monthly report of Jeju power system operation result made by Korea Power Exchange-Jeju.

The Effect of Consideration Set on Market Structure

  • Kim, Jun B.
    • Asia Marketing Journal
    • /
    • v.22 no.2
    • /
    • pp.1-18
    • /
    • 2020
  • We estimate a choice-based aggregate demand model accounting for consumers' consideration sets, and study its implications on market structure. In contrast to past research, we model and estimate consumer demand using aggregate-level consumer browsing data in addition to aggregate-level choice data. The use of consumer browsing data allows us to study consumer demand in a realistic setting in which consumers choose from a subset of products. We calibrate the proposed model on both data sets, avoid biases in parameter estimates, and compute the price elasticity measures. As an empirical application, we estimate consumer demand in the camcorder category and study its implications on market structure. The proposed model predicts a limited consumer price response and offers a more discriminating competitive landscape from the one assuming universal consideration set.

Forecasting Housing Demand with Big Data

  • Kim, Han Been;Kim, Seong Do;Song, Su Jin;Shin, Do Hyoung
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.44-48
    • /
    • 2015
  • Housing price is a key indicator of housing demand. Actual Transaction Price Index of Apartment (ATPIA) released by Korea Appraisal Board is useful to understand the current level of housing price, but it does not forecast future prices. Big data such as the frequency of internet search queries is more accessible and faster than ever. Forecasting future housing demand through big data will be very helpful in housing market. The objective of this study is to develop a forecasting model of ATPIA as a part of forecasting housing demand. For forecasting, a concept of time shift was applied in the model. As a result, the forecasting model with the time shift of 5 months shows the highest coefficient of determination, thus selected as the optimal model. The mean error rate is 2.95% which is a quite promising result.

  • PDF

A combination of periodic and on-demand scheduling for data broadcasting in mobile convergence networks (모바일 융합망에서 주기적방법과 on-demand 방법을 결합한 데이터 방송 스케줄링 기법)

  • Kang, Sang-Hyuk;Ahn, Hee-June
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • We propose a hybrid broadcast scheduling based on a combination of periodic and on-demand data scheduling methods for mobile data broadcasting in convergence networks from communication and broadcasting. We consider an environment in which the forward channel is for data broadcasting and the reverse channel is for sending data requests via cellular phones, WLAN, WiBro, etc. Collecting statistics of requests from clients, the server partitions the data items into hot-item and cold-item sets. Hot items are sent based on a push-based scheduling. An on-demand scheduling method is applied to cold items. Performance evaluation from simulations shows that our proposed scheduling algorithm yields small response time with high successful response ratio.

Short-term demand forecasting Using Data Mining Method (데이터마이닝을 이용한 단기부하예측)

  • Choi, Sang-Yule;Kim, Hyoung-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.126-133
    • /
    • 2007
  • This paper proposes information technology based data mining to forecast short term power demand. A time-series analyses have been applied to power demand forecasting, but this method needs not only heavy computational calculation but also large amount of coefficient data. Therefore, it is hard to analyze data in fast way. To overcome time consuming process, the author take advantage of universally easily available information technology based data-mining technique to analyze patterns of days and special days(holidays, etc.). This technique consists of two steps, one is constructing decision tree, the other is estimating and forecasting power flow using decision tree analysis. To validate the efficiency, the author compares the estimated demand with real demand from the Korea Power Exchange.