• Title/Summary/Keyword: Demand Response System

Search Result 476, Processing Time 0.029 seconds

A Study on Design of Home Energy Management System to Induce Price Responsive Demand Response to Real Time Pricing of Smart Grid (스마트그리드 실시간요금과 연동되는 수요반응을 유도하기 위한 HEMS 설계에 관한 연구)

  • Kang, Dong-Joo;Park, Sun-Joo;Choi, Soo-Jung;Han, Seong-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.39-49
    • /
    • 2011
  • Smart Grid has two main objectives on both supply and demand aspects which are to distribute the renewable energy sources on supply side and to develop realtime price responses on demand side. Renewable energy does not consume fossil fuels, therefore it improves the eco-friendliness and saves the cost of power system operation at the same time. Demand response increases the flexibility of the power system by mitigating the fluctuation from renewable energies, and reduces the capacity investment cost by shedding the peak load to off-peak periods. Currently Smart Grid technologies mainly focus on energy monitoring and display services but it has been proved that enabling technologies can induce the higher demand responses through many pilot projects in USA. On this context, this paper provides a price responsive algorithm for HEMS (home energy management system) on the real time pricing environment. This paper identifies the demand response as a core function of HEMS and classifies the demand into 3 categories of fixed, transferable, and realtime responsive loads which are coordinated and operated for the utility maximization or cost minimization with the optimal usage combination of three kinds of demand.

An Analysis on the Effects of Demand Response in Electricity Markets (수요반응자원의 전력시장 도입효과 분석)

  • Yoo, Young-Gon;Song, Byung-Gun;Kang, Seung-Jin
    • Environmental and Resource Economics Review
    • /
    • v.16 no.1
    • /
    • pp.99-127
    • /
    • 2007
  • When the margin between available capacity and demand is thin in a liberalized electricity market, prices rise steeply and system reliability is threatened. The principal response to these circumstances is often an assumption that price spikes and electricity shortages are the result of a failure to build sufficient new supplying facilities. It is, of course, often the case that additional investments in generation and network facilities would improve reliability, and such investments are often needed. But focusing on additional generation and transmission facilities for restoring balance to the grid overlooks the essential fact that reliability is a function of the relationship between supply and demand, imposing unnecessary costs on electric system. When the relationship is out of balance, the search for solutions must consider not only investments supply-side resources but also cost-effective demand-side resources such as accelerated load management, efficiency measures, and price-responsive load programs. Integrating demand resources into electricity markets can add enormous value to the electric system, widening the capacity margin, lowering costs and enhancing system reliability at the same time. This paper studies several challenges now facing electricity markets: demand-side management-especially, economic effects of demand response, potential reliability problems, market and system operation, CBP market improvements and so on. The paper concludes with a series of policy recommendations in five areas: (i) The Effects of efficient improvement to incorporate demand responses and demand-side resources into modem electricity markets, (ii) Fosteing price based demand response and (iii) improving incentive based demand response, (iv) strengthen demand response analysis and valuation, (v) integrating demand response into resource planning and adopting enabling technologies.

  • PDF

A Study on Designing a Market Driven Demand Response System (시장 기반의 수요관리 기법 Demand Response System 설계 방안 연구)

  • Yu, In-H.;Lee, Jin-K.;Kim, Sun-I.;Ko, Jong-M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.384-386
    • /
    • 2002
  • As restructuring in power industry has introduced competitive markets, a new method on demand side management has been developed. Many programs using the method were developed with providing several choices for customer. Nowadays the programs are called demand response as the load management is done by customer's responding to the market price signal. It was proven that the method was effective for demand control with the active consumer's attending for the program. This paper analyses the perspective and the requirement for designing the demand response system.

  • PDF

Building AHU Load Control Algorithm based on Demand Response (DR 기반의 건물 공조 부하관리 알고리즘)

  • Kim, Jeong-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1225-1228
    • /
    • 2011
  • This paper presents an advanced energy saving algorithm in building. It is important to aggregate a various demand side resource which is controllable on demand response environment. Previous demand side algorithm for building is restricted on peak power. In this paper, we suggest duty cycle algorithm for AHU on demand response to reduce the quantity of building power consumption. The test results show that the proposed algorithm is very effective.

A Study on the Implementation of Demand Response System in Smart Grid (스마트 그리드 수요 반응 시스템의 구현에 관한 연구)

  • Park, Ju Hyun;Hwang, Yu Min;Kim, Jin Young;Lee, Jae Jo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • The smart grid is a next-generation power grid to create a new value-added information technology. Power providers and consumers exchange information in real-time bi-directional, and optimize energy efficiency with using the smart grid. This paper describes the concept of demand response of the communication system used in the protocol, implementation of demand response systems with demand response scenarios for power reduction through the air conditioning control.

Impacts of Demand Response from Different Sectors on Generation System Well Being

  • Hassanzadeh, Muhammad Naseh;Fotuhi-Firuzabad, Mahmud;Safdarian, Amir
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1719-1728
    • /
    • 2017
  • Recent concerns about environmental conditions have triggered the growing interest in using green energy resources. These sources of energy, however, bring new challenges mainly due to their uncertainty and intermittency. In order to alleviate the concerns on the penetration of intermittent energy resources, this paper investigates impacts of realizing demand-side potentials. Among different demand-side management programs, this paper considers demand response wherein consumers change their consumption pattern in response to changing prices. The research studies demand response potentials from different load sectors on generation system well-being. Consumers' sensitivity to time-varying prices is captured via self and cross elasticity coefficients. In the calculation of well-being indices, sequential Monte Carlo simulation approach is accompanied with fuzzy logic. Finally, IEEE-RTS is used as the test bed to conduct several simulations and the associated results are thoroughly discussed.

State Transition Model of Demand Response Considering Behavior Patterns of Customer (소비자의 행동 패턴을 고려한 수요반응의 상태 천이 모델)

  • Kwag, Hyung-Geun;Lee, Na-Eun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1074-1079
    • /
    • 2013
  • Demand response(DR) is potential generation alternative to improve the reliability indices of system and load points. However, when demand resources scheduled in DR market fail to reduce demand, it can create new problems associated with maintaining a reliable supply. In this paper, a reliability model of demand resource is constructed considering customers' behaviors in the same form as conventional generation units, where availability and unavailability are associated with the simple two-state model. As a result, the generalized reliability model of demand resources is represented by multi-state model.

Economic Evaluation of ESS Applying to Demand Response Management in Urban Railway System (도시철도부하 수요자원 관리에 ESS 활용 시 경제성 분석)

  • Park, Jong-young;Heo, Jae-Haeng;Kim, Hyeongig;Kim, Hyungchul;Shin, Seungkwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.222-228
    • /
    • 2017
  • The aims of the demand response market are stabilization of the power supply and improving of the reliability of the power system. The various applications of the energy storage system (ESS) in the railway systems are studied and implemented to raise the energy efficiency. It is one of the most important how to determine the obligation reduction capacity (ORC) in participation to the demand response market because it has an influence on the profit extremely. In this paper, when participating to the demand response market with demands in the urban railway, we calculated the available ORC and economically evaluated ESS based on the real load data.

Operation of Demand Bidding Program to Enhance Demand Response (수요반응을 위한 수요입찰제(수요자원시장) 운영)

  • Sohn, Yoon-Tae;Lee, Ho-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1575-1580
    • /
    • 2010
  • Demand Response is a well-known means usually operated by the system operator(SO) or the electricity retailers in order to reduce the peak loads or cut the price in electricity market. KPX(Korea Power eXchange), the SO in Korea has been operating the demand bidding program(or the demand resource market) since it was firstly introduced as the pilot project in 2008. The results has proved to be effective to enhance demand response. This paper describes the basic concepts and the operation results of the program.

Risk-Based Allocation of Demand Response Resources Using Conditional Value-at Risk (CVaR) Assessment

  • Kim, Ji-Hui;Lee, Jaehee;Joo, Sung-Kwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.789-795
    • /
    • 2014
  • In a demand response (DR) market run by independent system operators (ISOs), load aggregators are important market participants who aggregate small retail customers through various DR programs. A load aggregator can minimize the allocation cost by efficiently allocating its demand response resources (DRRs) considering retail customers' characteristics. However, the uncertain response behaviors of retail customers can influence the allocation strategy of its DRRs, increasing the economic risk of DRR allocation. This paper presents a risk-based DRR allocation method for the load aggregator that takes into account not only the physical characteristics of retail customers but also the risk due to the associated response uncertainties. In the paper, a conditional value-at-risk (CVaR) is applied to deal with the risk due to response uncertainties. Numerical results are presented to illustrate the effectiveness of the proposed method.