• Title/Summary/Keyword: Demand Prediction

Search Result 638, Processing Time 0.029 seconds

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

Characterizing Distribution Patterns of Major Aquatic Insect Assemblages (Ephemeroptera, Plecoptera, and Trichoptera) Based on Community Temperature Index at Headwater Streams (군집온도지수를 활용한 상류하천 주요 수서곤충의 군집 분포특성 분석: 하루살이목, 강도래목, 날도래목을 중심으로)

  • Dong-Won Shim;Da-Yeong Lee;Dae-Seong Lee;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.305-319
    • /
    • 2022
  • The community temperature index (CTI) reflects the temperature and environmental preferences of the community. We investigated the distribution patterns of major aquatic insect assemblages (Ephemeroptera, Plecoptera, and Trichoptera; EPT) based on CTI in streams of South Korea. We selected unpolluted 151 study sites at upper streams(less than 3rd) with less than 1.5 mg L-1 of biochemical oxygen demand. Study sites were clustered into six groups based on the similarities of their EPT composition. All three orders showed a continuous decrease in the number of species as CTI increased, especially in Plecoptera. In addition, the functional feeding groups were also significantly changed according the CTI changes. Temperature tolerance range of each group's indicator species varied according to the CTI of the group. Finally, changes of CTI reflected differences of EPT assemblages according to the differences of environmental condition including temperature. Therefore, CTI can be applied to the evaluation and preservation of stream ecosystems and prediction of community changes due to climate change.

Explosion Likelihood Investigation of Facility Using CVD Equipment Using SEMI S6 (SEMI S6를 적용한 CVD 설비의 폭발분위기 조성 가능성 분석)

  • Mi Jeong Lee;Dae Won Seo;Seong Hee Lee;Dong Geon Lee;Se Jong Bae;Jong-Bae Baek
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.62-67
    • /
    • 2023
  • Due to the prolonged impact of COVID-19, the demand for Information Technology (IT) products is increasing, and their production facilities are expanded. Consequently, the use of harmful and dangerous chemicals are increased, the risk of fire(s) and explosion(s) is also elevated. In order to mitigate these risks, the government sets standards, such as KS C IEC 60079-10-1, and manages explosion-prone hazardous facilities where flammable substances are manufactured, used, and handled. However, using the standards of KS, it is difficult to predict the actual possibility of an explosion in a facility, because ventilation (an important factor) is not considered when setting up a hazardous work environment. In this study, the SEMI S6, Tracer Gas Test was applied to the chemical vapor deposition (CVD) facility, a major part of the display industry, to evaluate ventilation performance and to confirm the possibility of creating a less explosive environment. Based on the results, it was confirmed that the ventilation performance in the assumed scenarios met the standards stipulated in SEMI S6, along with supporting the possibility of creating a less explosive working condition. Therefore, it is recommended to use the prediction tool using engineering techniques, as well as KS standards, in such hazardous environments to prevent accidents and/or reduce economic burden following accidents.

The Improvement of Excavation Efficiency of Roadheader by Using Pre-Cracked Method in High Strength Rock (선균열공법을 활용한 고강도 암반구간 로드헤더 굴진효율 향상방안 연구)

  • Hyung-Ryul Kim;Sang-Jun Jung;Jun-Ho Kang
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.141-149
    • /
    • 2023
  • Recently, as the demand for urban underground space increases, urban tunnel planning is actively progressing. In particular, the application of the roadheader excavation method, which has favorable applicability to urban tunnel, is increasing. However, it is known that the roadheader excavation method has a limitation in that excavation efficiency for high strength rock with a Uniaxial Compressive Strength (UCS) of 100 MPa or more is lowered. In this study, The pre-cracked method was presented as a method to improve the excavation efficiency of roadheader for high strength rock and its applicability was evaluated. The net cutting rate was evaluated using the Bilgin prediction formula, which can calculate the net cutting rate by considering the UCS and RQD (Rock Quality Designation). It was found that the net cutting rate increased as the RQD decreased under the rock condition with the same UCS. This is judged to increase the excavation efficiency of the roadheader in the jointed high strength rock. Additionally, the field applicability of the pre-cracked method for high strength rock was verified through field tests. It was confirmed that the crack zone was formed around the charging hole, and it is considered that the pre-cracked method can be applied to the high strength rock.

Automation of Regression Analysis for Predicting Flatfish Production (광어 생산량 예측을 위한 회귀분석 자동화 시스템 구축)

  • Ahn, Jinhyun;Kang, Jungwoon;Kim, Mincheol;Park, So-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.128-130
    • /
    • 2021
  • This study aims to implement a Regression Analysis system for predicting the appropriate production of flatfish. Due to Korea's signing of FTAs with countries around the world and accelerating market opening, Korean flatfish farming businesses are experiencing many difficulties due to the specificity and uncertainty of the environment. In addition, there is a need for a solution to problems such as sluggish consumption and price drop due to the recent surge in imported seafood such as salmon and yellowtail and changes in people's dietary habits. in this study, Using the python module, xlwings, it was used to obtain for the production amount of flatfish and to predict the amount of flatfish to be produced later. was used to predict the amount of flatfish to be produced in the future. Therefore, based on the analysis results of this prediction of flatfish production, the flatfish aquaculture industry will be able to come up with a plan to achieve an appropriate production volume and control supply and demand, which will reduce unnecessary economic loss and promote new value creation based on data. In addition, through the data approach attempted in this study, various analysis techniques such as artificial neural networks and multiple regression analysis can be used in future research in various fields, which will become the foundation of basic data that can effectively analyze and utilize big data in various industries.

  • PDF

Dust Prediction System based on Incremental Deep Learning (증강형 딥러닝 기반 미세먼지 예측 시스템)

  • Sung-Bong Jang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.301-307
    • /
    • 2023
  • Deep learning requires building a deep neural network, collecting a large amount of training data, and then training the built neural network for a long time. If training does not proceed properly or overfitting occurs, training will fail. When using deep learning tools that have been developed so far, it takes a lot of time to collect training data and learn. However, due to the rapid advent of the mobile environment and the increase in sensor data, the demand for real-time deep learning technology that can dramatically reduce the time required for neural network learning is rapidly increasing. In this study, a real-time deep learning system was implemented using an Arduino system equipped with a fine dust sensor. In the implemented system, fine dust data is measured every 30 seconds, and when up to 120 are accumulated, learning is performed using the previously accumulated data and the newly accumulated data as a dataset. The neural network for learning was composed of one input layer, one hidden layer, and one output. To evaluate the performance of the implemented system, learning time and root mean square error (RMSE) were measured. As a result of the experiment, the average learning error was 0.04053796, and the average learning time of one epoch was about 3,447 seconds.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

A Study on Water Demand Forecasting Methods Applicable to Developing Country (개발도상국에 적용 가능한 물수요 예측 방법 연구)

  • Sung-Uk Kim;Kye-Won Jun;Wan-Seop Pi;Jong-Ho Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.75-84
    • /
    • 2023
  • Many developing countries face challenges in estimating long-term discharge due to the lack of hydrological data for water supply planning, making it difficult to establish a rational water supply plan for decision-making on water distribution. The study area, the Bandung region in Indonesia, is experiencing rapid urbanization and population concentration, leading to a severe shortage of freshwater. The absence of water reservoir prediction methods has resulted in a water supply rate of approximately 20%. In this study, we aimed to propose an approach for predicting water reservoirs in developing countries by analyzing water safety and potential water supply using the MODSIM (Modified SIMYLD) network model. To assess the suitability of the MODSIM model, we applied the unit hydrograph method to calculate long-term discharge based on 19 years of discharge data (2002-2020) from the Pataruman observation station. The analysis confirmed alignment with the existing monthly optimal operation curve. The analysis of power plant capacity revealed a difference of approximately 0.30% to 0.50%, and the water intake safety at the Pataruman point showed 1.64% for Q95% flow and 0.47% for Q355 flow higher. Operational efficiency, compared to the existing reservoir optimal operation curve, was measured at around 1%, confirming the potential of using the MODSIM network model for water supply evaluation and the need for water supply facilities.

Study on Customer Satisfaction Performance Evaluation through e-SCM-based OMS Implementation (e-SCM 기반 OMS 구현을 통한 고객 만족 성과평가에 관한 연구)

  • Hyungdo Zun;ChiGon Kim;KyungBae Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.891-899
    • /
    • 2024
  • The Fourth Industrial Revolution is centered on a personalized demand fulfillment economy and is all about transformation and flexible processing that can deliver what customers want in real time across space and time. This paper implements the construction and operation of a packaging platform that can instantly procure the required packaging products based on real-time orders and evaluates its performance. The components of customer satisfaction are flexible and dependent on the situation which requires efficient management of enterprise operational processes based on an e-SCM platform. An OMS optimized for these conditions plays an important role in maximizing and differentiating the efficiency of a company's operations and improving its cost advantage. OMS is a system of mass customization that provides efficient MOT(Moment of Truth) logistics services to meet the eco-friendly issues of many individual customers and achieve optimized logistics operation goals to enhance repurchase intentions and sustainable business. OMS precisely analyzes the collected data to support information and decision-making related to efficiency, productivity, cost and provide accurate reports. It uses data visualization tools to express data visually and suggests directions for improvement of the operational process through statistics and prediction analysis.

Development of an intelligent IIoT platform for stable data collection (안정적 데이터 수집을 위한 지능형 IIoT 플랫폼 개발)

  • Woojin Cho;Hyungah Lee;Dongju Kim;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.687-692
    • /
    • 2024
  • The energy crisis is emerging as a serious problem around the world. In the case of Korea, there is great interest in energy efficiency research related to industrial complexes, which use more than 53% of total energy and account for more than 45% of greenhouse gas emissions in Korea. One of the studies is a study on saving energy through sharing facilities between factories using the same utility in an industrial complex called a virtual energy network plant and through transactions between energy producing and demand factories. In such energy-saving research, data collection is very important because there are various uses for data, such as analysis and prediction. However, existing systems had several shortcomings in reliably collecting time series data. In this study, we propose an intelligent IIoT platform to improve it. The intelligent IIoT platform includes a preprocessing system to identify abnormal data and process it in a timely manner, classifies abnormal and missing data, and presents interpolation techniques to maintain stable time series data. Additionally, time series data collection is streamlined through database optimization. This paper contributes to increasing data usability in the industrial environment through stable data collection and rapid problem response, and contributes to reducing the burden of data collection and optimizing monitoring load by introducing a variety of chatbot notification systems.