DOI QR코드

DOI QR Code

Characterizing Distribution Patterns of Major Aquatic Insect Assemblages (Ephemeroptera, Plecoptera, and Trichoptera) Based on Community Temperature Index at Headwater Streams

군집온도지수를 활용한 상류하천 주요 수서곤충의 군집 분포특성 분석: 하루살이목, 강도래목, 날도래목을 중심으로

  • Received : 2022.12.09
  • Accepted : 2022.12.23
  • Published : 2022.12.31

Abstract

The community temperature index (CTI) reflects the temperature and environmental preferences of the community. We investigated the distribution patterns of major aquatic insect assemblages (Ephemeroptera, Plecoptera, and Trichoptera; EPT) based on CTI in streams of South Korea. We selected unpolluted 151 study sites at upper streams(less than 3rd) with less than 1.5 mg L-1 of biochemical oxygen demand. Study sites were clustered into six groups based on the similarities of their EPT composition. All three orders showed a continuous decrease in the number of species as CTI increased, especially in Plecoptera. In addition, the functional feeding groups were also significantly changed according the CTI changes. Temperature tolerance range of each group's indicator species varied according to the CTI of the group. Finally, changes of CTI reflected differences of EPT assemblages according to the differences of environmental condition including temperature. Therefore, CTI can be applied to the evaluation and preservation of stream ecosystems and prediction of community changes due to climate change.

군집온도지수는 군집 구성원의 온도에 대한 선호도를 반영한다. 본 연구에서는 국내 하천 중 BOD 1.5 mg L-1 이하이며 하천차수 3 이하인 151개 지점을 선정하여 CTI의 차이에 따른 하루살이목, 강도래목, 날도래목 (EPT) 군집지수와 섭식기능군의 변화를 분석하였다. 세 가지 목 모두 CTI의 증가에 따라 출현 종수가 지속적으로 감소하는 경향을 보였다. 또한 강도래목에서는 CTI가 낮은 그룹에서 개체수도 높은 값을 보였으며 세 가지 목 중 가장 민감한 분류군으로 나타났다. 섭식기능군에서도 CTI가 증가함에 따라 SH 비율은 낮아지고 GC의 비율은 증가하는 유의한 변화가 발생하였으며, 이를 통해 CTI가 변화할 때 기능적인 측면 역시 변화함을 확인하였다. 우점종은 그룹에 따른 차이가 크게 나타나지 않았으나 지표종은 그룹의 CTI에 따라 서식온도범위가 나눠지는 경향을 보였다. NMDS 결과는 EPT 분류군 중에서 강도래목이 온도에 가장 민감한 모습을 보이는 점과 섭식기능군의 경향성 차이 등의 앞선 결과들을 뒷받침하였다. 본 연구는 기후 변화에 따른 저서성 대형무척추동물의 군집 변화 예상에 기여하고 이에 따른 하천 생태계 보전 전략 수립에 사용될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 환경부의 재원인 한국환경산업기술원 수생태계 건강성 확보 기술개발사업 (과제번호: 2020003050003)과 한국연구재단의 지원(NRF-2019R1A2C1087099)을 받아 수행되었습니다.

References

  1. Bae, M.-J. and Y.-S. Park. 2017. Diversity and distribution of endemic stream Insects on a nationwide scale, South Korea: conservation perspectives. Water 9: 833. 
  2. Bae, M.-J., S.-M. Park, J.-K. Kim, J.-G. Hong and S.H. Ryu. 2020. The relationships between benthic macroinvertebrate and environmental factors in Iancheon and Bukcheon streams, Korea. Korean Journal of Ecology and Environment 53: 22-30.  https://doi.org/10.11614/KSL.2020.53.1.022
  3. Barbour, M., J. Gerritsen, G. Griffith, R. Frydenborg, E. McCarron, J. White and M. Bastian. 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society 15: 185-211.  https://doi.org/10.2307/1467948
  4. Barnagaud, J.-Y., V. Devictor, F. Jiguet, M. Barbet-Massin, I. Le Viol and F. Archaux. 2012. Relating habitat and climatic niches in birds. PLoS One 7: e32819. 
  5. Beals, E.W. 1984. Bray-Curtis ordination: An effective strategy for analysis of multivariate ecological data. p. 1-55. In: Advances in Ecological Research (MacFadyen, A. and E.D. Ford, eds.). Academic Press. 
  6. Bonada, N., N. Prat, V.H. Resh and B. Statzner. 2006. Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Annual Review of Entomology 51: 495-523.  https://doi.org/10.1146/annurev.ento.51.110104.151124
  7. Burgmer, T., H. Hillebrand and M. Pfenninger. 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151: 93-103.  https://doi.org/10.1007/s00442-006-0542-9
  8. Caceres, M.D. and P. Legendre. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566-3574.  https://doi.org/10.1890/08-1823.1
  9. Chung, N., M.-J. Bae, F. Li, Y.-S. Kwon, T.-S. Kwon, J.-S. Kim and Y.-S. Park. 2012. Habitat characteristics and trophic structure of benthic macroinvertebrates in a forested headwater stream. Journal of Asia-Pacific Entomology 15: 495-505.  https://doi.org/10.1016/j.aspen.2012.05.002
  10. Cibik, J., P. Beracko, I. Krno, T. Lanczos, T. Navara and T. Derka. 2021. The taxonomical and functional diversity of three groups of aquatic insects in rheocrene karst springs are affected by different environmental factors. Limnologica 91:125913. 
  11. Cummins, K.W. 1974. Structure and function of stream ecosystems. BioScience 24: 631-641.  https://doi.org/10.2307/1296676
  12. De Caceres, M., F. Jansen and M.M. De Caceres. 2016. Package 'indicspecies'. indicators 8. 
  13. De Caceres, M., P. Legendre and M. Moretti. 2010. Improving indicator species analysis by combining groups of sites. Oikos 119: 1674-1684.  https://doi.org/10.1111/j.1600-0706.2010.18334.x
  14. Devictor, V., R. Julliard, D. Couvet and F. Jiguet. 2008. Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences 275: 2743-2748.  https://doi.org/10.1098/rspb.2008.0878
  15. Dinno, A. 2017. dunn. test: Dunn's test of multiple comparisons using rank sums. R package version. 
  16. Dufrene, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366. 
  17. Dunn, O.J. 1964. Multiple comparisons using rank sums. Technometrics 6: 241-252.  https://doi.org/10.1080/00401706.1964.10490181
  18. Durance, I. and S.J. Ormerod. 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13: 942-957.  https://doi.org/10.1111/j.1365-2486.2007.01340.x
  19. Flanagan, P.H., O.P. Jensen, J.W. Morley and M.L. Pinsky. 2019. Response of marine communities to local temperature changes. Ecography 42: 214-224.  https://doi.org/10.1111/ecog.03961
  20. Fochetti, R. and J.M.T. de Figueroa. 2006. Notes on diversity and conservation of the European fauna of Plecoptera (Insecta). Journal of Natural History 40: 2361-2369.  https://doi.org/10.1080/00222930601051386
  21. Haubrock, P.J., F. Pilotto and P. Haase. 2020. Do changes in temperature affect EU Water Framework Directive compliant assessment results of central European streams? Environmental Sciences Europe 32: 129. 
  22. Heino, J., R. Virkkala and H. Toivonen. 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39-54.  https://doi.org/10.1111/j.1469-185X.2008.00060.x
  23. Hernandez, O., R.W. Merritt and M.S. Wipfli. 2005. Benthic invertebrate community structure is influenced by forest succession after clearcut logging in southeastern Alaska. Hydrobiologia 533: 45-59.  https://doi.org/10.1007/s10750-004-2105-6
  24. Houser, J.N., P.J. Mulholland and K.O. Maloney. 2006. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow. Journal of Environmental Quality 35: 352-365.  https://doi.org/10.2134/jeq2005.0102
  25. Jonsson, M., B. Malmqvist and P.-O. Hoffsten. 2001. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshwater Biology 46: 161-171.  https://doi.org/10.1046/j.1365-2427.2001.00655.x
  26. Kruskal, W.H. and W.A. Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621. 
  27. Kwon, T.-S. 2017a. Family composition and temperature in fly assemblages: Community temperature index using family temperature index. Journal of Asia-Pacific Biodiversity 10: 385-389.  https://doi.org/10.1016/j.japb.2017.07.003
  28. Kwon, T.-S. 2017b. Temperature and ant assemblages: Biased values of community temperature index. Journal of Asia-Pacific Entomology 20: 1077-1086.  https://doi.org/10.1016/j.aspen.2017.04.005
  29. Lee, D.-S., Y.-S. Bae, B.-K. Byun, S. Lee, J.K. Park and Y.-S. Park. 2019. Occurrence prediction of the citrus flatid planthopper (Metcalfa pruinosa (Say, 1830)) in South Korea using a Random Forest Model. Forests 10: 583. 
  30. Lee, D.-Y., D.-S. Lee, S.-J. Hwang, K.-L. Lee and Y.-S. Park. 2022. Distribution patterns and vulnerability of stoneflies (Plecoptera: Insecta) in South Korean streams with conservation perspectives. Global Ecology and Conservation 34: e02030. 
  31. Lee, D.-Y., D.-S. Lee, C. Park, S.J. Yun, J.-H. Lim and Y.-S. Park. 2021. Comparison of benthic macroinvertebrate communities at two headwater streams located with different temperature regions in South Korea. Korean Journal of Ecology and Environment 54: 87-95.  https://doi.org/10.11614/KSL.2021.54.2.087
  32. Lenat, D.R. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Journal of the North American Benthological Society 7: 222-233.  https://doi.org/10.2307/1467422
  33. Li, F., Q. Cai, W. Jiang and X. Qu. 2012. The response of benthic macroinvertebrate communities to climate change: evidence from subtropical mountain streams in Central China. International Review of Hydrobiology 97: 200-214.  https://doi.org/10.1002/iroh.201111489
  34. Li, F., N. Chung, M.-J. Bae, Y.-S. Kwon, T.-S. Kwon and Y.- S. Park. 2013. Temperature change and macroinvertebrate biodiversity: assessments of organism vulnerability and potential distributions. Climatic Change 119: 421-434.  https://doi.org/10.1007/s10584-013-0720-9
  35. Li, F., Y.-S. Kwon, M.-J. Bae, N. Chung, T.-S. Kwon and Y.-S. Park. 2014. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea. Conservation Biology 28: 498-508.  https://doi.org/10.1111/cobi.12219
  36. Lindstrom, A., M. Green, G. Paulson, H.G. Smith and V. Devictor. 2013. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography 36: 313-322.  https://doi.org/10.1111/j.1600-0587.2012.07799.x
  37. Mangadze, T., R.J. Wasserman, P.W. Froneman and T. Dalu. 2019. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams. Science of The Total Environment 695: 133910. 
  38. Mantua, N., I. Tohver and A. Hamlet. 2010. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Climatic Change 102: 187-223.  https://doi.org/10.1007/s10584-010-9845-2
  39. Meyer, J.L., D.L. Strayer, J.B. Wallace, S.L. Eggert, G.S. Helfman and N.E. Leonard. 2007. The contribution of headwater streams to biodiversity in river networks 1. JAWRA Journal of the American Water Resources Association 43: 86-103.  https://doi.org/10.1111/j.1752-1688.2007.00008.x
  40. MOE/NIER. 2008. The survey and evaluation of aquatic ecosystem health in Korea., Incheon, Korea. 
  41. Narangarvuu, D., J. Oyunbileg, P.-S. Yang and B. Boldgiv. 2015. Distribution of Ephemeroptera, Plecoptera, and Trichoptera assemblages in relation to environmental variables in headwater streams of Mongolia. Environmental Earth Sciences 73: 835-847.  https://doi.org/10.1007/s12665-013-2968-9
  42. Niedrist, G.H. and L. Fureder. 2021. Real-time warming of Alpine streams: (re)defining invertebrates̓ temperature preferences. River Research and Applications 37: 283-293.  https://doi.org/10.1002/rra.3638
  43. Nielsen, F. 2016. Hierarchical clustering. p. 195-211. Introduction to HPC with MPI for Data Science. Springer International Publishing, Cham. 
  44. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R. O'Hara, G. Simpson and P. Solymos. 2020. vegan: Community ecology package. R package version 2.5-6. 2019. 
  45. QGIS Development Team. 2021. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 
  46. R Core Team. 2021. R: A language and environment for statistical computing. The R Stats Package. 
  47. Reid, D.J., J.M. Quinn and A.E. Wright-Stow. 2010. Responses of stream macroinvertebrate communities to progressive forest harvesting: Influences of harvest intensity, stream size and riparian buffers. Forest Ecology and Management 260: 1804-1815.  https://doi.org/10.1016/j.foreco.2010.08.025
  48. Resh, V. and J. Jackson. 1993. Rapid assessment approaches in benthic macroinvertebrate biomonitoring studies. Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York: 195-233. 
  49. Richardson, J., J.A.T. Boubee and D.W. West. 1994. Thermal tolerance and preference of some native New Zealand freshwater fish. New Zealand Journal of Marine and Freshwater Research 28: 399-407.  https://doi.org/10.1080/00288330.1994.9516630
  50. Richardson, J.S. 2019. Biological diversity in headwater streams. Water 11: 366. 
  51. Rostgaard, S. and D. Jacobsen. 2005. Respiration rate of stream insects measured in situ along a large altitude range. Hydrobiologia 549: 79-98.  https://doi.org/10.1007/s10750-005-4165-7
  52. Roth, T., M. Plattner and V. Amrhein. 2014. Plants, birds and butterflies: Short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS One 9: e82490. 
  53. Sabha, I., S.A. Khanday, S.T. Islam and S.U. Bhat. 2020. Longitudinal and temporal assemblage patterns of benthic macroinvertebrates in snow melt stream waters of the Jhelum River Basin of Kashmir Himalaya (India). Ecohydrology 13: e2236. 
  54. Sheldon, K.S., S. Yang and J.J. Tewksbury. 2011. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecology Letters 14: 1191-1200. 
  55. Simpson, G.L. 2007. Analogue methods in palaeoecology: using the analogue package. Journal of Statistical Software 22:1-29.  https://doi.org/10.18637/jss.v022.i02
  56. Simpson, G.L. and J. Oksanen. 2021. analogue: Analogue and weighted averaging methods for palaeoecology. 
  57. Somers, K.M., R.A. Reid and S.M. David. 1998. Rapid biological assessments: how many animals are enough? Journal of the North American Benthological Society 17: 348-358.  https://doi.org/10.2307/1468337
  58. Statzner, B. and L.A. Beche. 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80-119.  https://doi.org/10.1111/j.1365-2427.2009.02369.x
  59. Sundar, S., J. Heino, F.d. O. Roque, J.P. Simaika, A.S. Melo, J.D. Tonkin, D. Gomes Nogueira and D.P. Silva. 2020. Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems 30: 1238-1250.  https://doi.org/10.1002/aqc.3326
  60. Tierno de Figueroa, J.M., M.J. Lopez-Rodriguez, A. Lorenz, W. Graf, A. Schmidt-Kloiber and D. Hering. 2010. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodiversity and Conservation 19: 1269-1277.  https://doi.org/10.1007/s10531-009-9753-9
  61. Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137.  https://doi.org/10.1139/f80-017
  62. Verberk, W.C.E.P., I. Durance, I.P. Vaughan and S.J. Ormerod. 2016. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Global Change Biology 22: 1769-1778.  https://doi.org/10.1111/gcb.13240
  63. Ward, J.V. 1992. Aquatic insect ecology 1. Biology and habitat. Wiley & Sons. 
  64. Waters, T.F. 1972. The drift of stream insects. Annual Review of Entomology 17: 253-272.  https://doi.org/10.1146/annurev.en.17.010172.001345
  65. Weigelhofer, G. and J.A. Waringer. 1994. Allochthonous input of coarse particulate organic matter(CPOM) in a first to fourth order Austrian forest stream. Internationale Revue der gesamten Hydrobiologie und Hydrographie 79: 461-471.  https://doi.org/10.1002/iroh.19940790313
  66. Wijnhoven, S., M.C. van Riel and G. van der Velde. 2003. Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology 37: 151-158.  https://doi.org/10.1023/A:1023982200529
  67. Wilson, R.J., D. Gutierrez, J. Gutierrez, D. Martinez, R. Agudo and V.J. Monserrat. 2005. Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters 8: 1138-1146.  https://doi.org/10.1111/j.1461-0248.2005.00824.x
  68. Winterbourn, M.J., W.L. Chadderton, S.A. Entrekin, J.L. Tank and J.S. Harding. 2007. Distribution and dispersal of adult stream insects in a heterogeneous montane environment. Fundamental and Applied Limnology 168: 127. 
  69. Woodward, G., D.M. Perkins and L.E. Brown. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2093-2106.  https://doi.org/10.1098/rstb.2010.0055
  70. Zografou, K., V. Kati, A. Grill, R.J. Wilson, E. Tzirkalli, L.N. Pamperis and J.M. Halley. 2014. Signals of climate change in butterfly communities in a mediterranean protected area. PLoS One 9: e87245. 
  71. Zwick, P. 1980. Plecoptera (Steinfliegen). p. 1-115. Handbuch der Zoologie. de Gruyter.