• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.022 seconds

Water consumption forecasting and pattern classification according to demographic factors and automated meter reading (인구통계학적 요인 및 원격검침 자료를 활용한 가정용 물 사용패턴 분류 및 물 사용량 예측 연구)

  • Kim, Kibum;Park, Haekeum;Kim, Taehyeon;Hyung, Jinseok;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.3
    • /
    • pp.149-165
    • /
    • 2022
  • The water consumption data of individual consumers must be analyzed and forecast to establish an effective water demand management plan. A k-mean cluster model that can monitor water use characteristics based on hourly water consumption data measured using automated meter reading devices and demographic factors is developed in this study. In addition, the quantification model that can estimate the daily water consumption is developed. K-mean cluster analysis based on the four clusters shows that the average silhouette coefficient is 0.63, also the silhouette coefficients of each cluster exceed 0.60, thereby verifying the high reliability of the cluster analysis. Furthermore, the clusters are clearly classified based on water usage and water usage patterns. The correlation coefficients of four quantification models for estimating water consumption exceed 0.74, confirming that the models can accurately simulate the investigated demographic data. The statistical significance of the models is considered reasonable, hence, they are applicable to the actual field. Because the use of automated smart water meters has become increasingly popular in recent year, water consumption has been metered remotely in many areas. The proposed methodology and the results obtained in this study are expected to facilitate improvements in the usability of smart water meters in the future.

Marginal Effect Analysis of Travel Behavior by Count Data Model (가산자료모형을 기초로 한 통행행태의 한계효과분석)

  • 장태연
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • In general, the linear regression model has been used to estimate trip generation in the travel demand forecasting procedure. However, the model suffers from several methodological limitations. First, trips as a dependent variable with non-negative integer show discrete distribution but the model assumes that the dependent variable is continuously distributed between -$\infty$ and +$\infty$. Second, the model may produce negative estimates. Third, even if estimated trips are within the valid range, the model offers only forecasted trips without discrete probability distribution of them. To overcome these limitations, a poisson model with a assumption of equidispersion has frequently been used to analyze count data such as trip frequencies. However, if the variance of data is greater than the mean. the poisson model tends to underestimate errors, resulting in unreliable estimates. Using overdispersion test, this study proved that the poisson model is not appropriate and by using Vuong test, zero inflated negative binomial model is optimal. Model reliability was checked by likelihood test and the accuracy of model by Theil inequality coefficient as well. Finally, marginal effect of the change of socio-demographic characteristics of households on trips was analyzed.

Deep Neural Network Based Prediction of Daily Spectators for Korean Baseball League : Focused on Gwangju-KIA Champions Field (Deep Neural Network 기반 프로야구 일일 관중 수 예측 : 광주-기아 챔피언스 필드를 중심으로)

  • Park, Dong Ju;Kim, Byeong Woo;Jeong, Young-Seon;Ahn, Chang Wook
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • In this paper, we used the Deep Neural Network (DNN) to predict the number of daily spectators of Gwangju - KIA Champions Field in order to provide marketing data for the team and related businesses and for managing the inventories of the facilities in the stadium. In this study, the DNN model, which is based on an artificial neural network (ANN), was used, and four kinds of DNN model were designed along with dropout and batch normalization model to prevent overfitting. Each of four models consists of 10 DNNs, and we added extra models with ensemble model. Each model was evaluated by Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The learning data from the model randomly selected 80% of the collected data from 2008 to 2017, and the other 20% were used as test data. With the result of 100 data selection, model configuration, and learning and prediction, we concluded that the predictive power of the DNN model with ensemble model is the best, and RMSE and MAPE are 15.17% and 14.34% higher, correspondingly, than the prediction value of the multiple linear regression model.

Development of Homogeneous Road Section Determination and Outlier Filter Algorithm (국도의 동질구간 선정과 이상치 제거 방법에 관한 연구)

  • Do, Myung-Sik;Kim, Sung-Hyun;Bae, Hyun-Sook;Kim, Jong-Sik
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.7-16
    • /
    • 2004
  • The homogeneous road section is defined as one consisted of similar traffic characteristics focused on demand and supply. The criteria, in the aspect of demand, are the diverging rate and the ratio of green time to cycle time at signalized intersection, and distance between the signalized intersections. The criteria, in that or supply, are the traffic patterns such as traffic volume and its speed. In this study, the effective method to generate valuable data, pointing out the problems of removal method of obscure data, is proposed using data collected from Gonjiam IC to Jangji IC on the national highway No.3. Travel times are collected with licence matching method and traffic volume and speed are collected from detectors. Futhermore, the method of selecting homogeneous road section is proposed considering demand and supply aspect simultaneously. This method using outlier filtering algorithm can be applied to generate the travel time forecasting model and to revise the obscured of missing data transmitting from detectors. The point and link data collected at the same time on the rational highway can be used as a basis predicting the travel time and revising the obscured data in the future.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

The Utilization Probability Model of Expressway Service Area based on Individual Travel Behaviors Using Vehicle Trajectory Data (차량궤적자료를 활용한 통행행태 기반 고속도로 휴게소 이용 확률 모형 개발)

  • Bang, DaeHwan;Lee, YoungIhn;Chang, HyunHo;Han, DongHee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.63-75
    • /
    • 2018
  • A Service Area plays an important role in preventing accidents in advance by creating a space for long distance drivers or drowsy drivers to rest. Therefore, proper positioning of the expressway service area is essential, and it is important to analyze accurate demand forecasting and user travel behavior. Thus, this study analysis travel behavior and developed odel of the probability of using the service area by using the DSRC data collected by the RSE on the highway. According to the analysis, the usage behavior of highway service areas was most frequently when travel time was 90 minutes or more on weekdays and 70 minutes or more on weekends. The utilization rate of the service area estimated from the probability model of use of the rest area in this study was 1 % to 2 % error. The results of this study are meaningful in analyzing the behavior of the use of rest areas using the structured data and can be used as a differentiated strategy for selecting the location of rest areas and enhancing the service level of users.

Study on Tourism Demand Forecast and Influencing Factors in Busan Metropolitan City (부산 연안도시 관광수요 예측과 영향요인에 관한 연구)

  • Kyu Won Hwang;Sung Mo Nam;Ah Reum Jang;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.915-929
    • /
    • 2023
  • Improvements in people's quality of life, diversification of leisure activities, and changes in population structure have led to an increase in the demand for tourism and an expansion of the diversification of tourism activities. In particular, for coastal cities where land and marine tourism elements coexist, various factors influence their tourism demands. Tourism requires the construction of infrastructure and content development according to the demand at the tourist destination. This study aims to improve the prediction accuracy and explore influencing factors through time series analysis of tourism scale using agent-based data. Basic local governments in the Busan area were examined, and the data used were the number of tourists and the amount of tourism consumption on a monthly basis. The univariate time series analysis, which is a deterministic model, was used along with the SARIMAX analysis to identify the influencing factor. The tourism consumption propensity, focusing on the consumption amount according to business types and the amount of mentions on SNS, was set as the influencing factor. The difference in accuracy (RMSE standard) between the time series models that did and did not consider COVID-19 was found to be very wide, ranging from 1.8 times to 32.7 times by region. Additionally, considering the influencing factor, the tourism consumption business type and SNS trends were found to significantly impact the number of tourists and the amount of tourism consumption. Therefore, to predict future demand, external influences as well as the tourists' consumption tendencies and interests in terms of local tourism must be considered. This study aimed to predict future tourism demand in a coastal city such as Busan and identify factors affecting tourism scale, thereby contributing to policy decision-making to prepare tourism demand in consideration of government tourism policies and tourism trends.

Analysis of Traffic Accident Severity for Korean Highway Using Structural Equations Model (구조방정식모형을 이용한 고속도로 교통사고 심각도 분석)

  • Lee, Ju-Yeon;Chung, Jin-Hyuk;Son, Bong-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.17-24
    • /
    • 2008
  • Traffic accident forecasting model has been developed steadily to understand factors affecting traffic accidents and to reduce them. In Korea, the length of highways is over 3,000km, and it is within the top ten in the world. However, the number of accidents-per-one kilometer highway is higher than any other countries. The rapid increase of travel demand and transportation infrastructures since 1980's may influence on the high rates of traffic accident. Accident severity is one of the important indices as well as the rate of accident and factors such as road geometric conditions, driver characteristics and type of vehicles may be related to traffic accident severity. However, since all these factors are interacted complicatedly, the interactions are not easily identified. A structural equations model is adopted to capture the complex relationships among variables. In the model estimation, we use 2,880 accident data on highways in Korea. The SEM with several factors mentioned above as endogenous and exogenous variables shows that they have complex and strong relationships.

A Study on the Development of the Cash-Flow Forecasting Model in Apartment Business factoring tn Housing Payment Collection Pattern and Payment Condition for Construction Expences (분양대금 납부패턴과 공사대금 지급방식 변화를 고려한 공동주택사업의 현금흐름 예측모델 개발에 관한 연구)

  • Kim Soon-Young;Kim Kyoon-Tai;Han Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.353-358
    • /
    • 2001
  • Since the financial crisis broke out, liquidity has become the critical issue in housing construction industry. In order to secure liquidity, it is prerequisite to precisely forecast cash flow. However, construction companies have failed to come up with a systematic process to manage and forecast cash flow. Until now, companies have solely relied on the prediction of profits and losses, which is carried out as they review business feasibility. To obtain more accurate cash flow forecast model, practical pattern of payments should be taken into account. In this theory, basic model that analyzes practical housing payment collection pattern resulting from prepayments and arrears is described. This model is to complement conventional cash flow forecast scheme in the phase of business feasibility review. Analysis result on final losses in cash that occur as a result of prepayment and arrears is considered in this model. Additionally, in the estimation of construction cost in the phase of business feasibility review, real construction prices instead of official prices are applied to enhance accuracy of cash outflow forecast. The proportion of payment made by a bill and changes in payment date caused by rescheduling of a bill are also factored in to estimate cash outflow. This model would contribute to achieving accurate cash flow forecast that better reflect real situation and to enhancing efficiency in capital management by giving a clear picture with regard to the demand and supply timing of capital.

  • PDF

An empirical study on RFM-T model for market performance of B2B-based Technology Industry Companies (B2B 중심의 기술 산업 기업의 수익성 성과를 위한 RFM-T 모형 실증 연구)

  • Miyoung Woo;Young-Jun Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.167-175
    • /
    • 2024
  • Due to the Fourth Industrial Revolution, ICT(Information and Communication Technology) industry is becoming more important and sophisticated than ever. In B2B based ICT industry demand forecasting by analyzing the previous customer data is so important. RFM, one of customer relationship management models is a marketing technique that evaluates Recency, Frequency and Monetary value to predict customers behavior. RFM model has been studied focusing on the B2C based industry. On the other hand there is a lack of research on B2B based technology industry. Therefore this study applied it to B2B based high technology industry and considered T(technology collaboration) value, which are identified as important factors in the technology industry. To present an improved model for market performance in B2B technology industry, an empirical study was conducted on comparing the accuracy of the traditional RFM model and the improved RFM-T model. The objective of this study is to contribute to market performance by presenting an improved model in B2B based high technology industry.