• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.023 seconds

A Spatial Projection of Demand for Green Infrastructure and Its Application to GeoDesign - Evidence-Based Design for Urban Resilience - (융합도시모델링을 통한 그린인프라 수요 예측 및 지오디자인 적용 - 도시 레질리언스를 위한 근거 기반 디자인 -)

  • Kwak, Yoonshin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.30-43
    • /
    • 2023
  • Green infrastructure(GI) is considered a key strategy in establishing sustainable communities. However, research on GI from the perspective of urban system dynamics and resilience lacks depth, as does its integration with physical design. This research addresses two primary causes. First, there is a gap in methods between existing GI planning, which considers static variables, and urban modeling research, which addresses dynamic variables. Second, there is a gap in information between landscape design and urban modeling research. To address these issues, this study proposes an integrated modeling approach in consideration of design decision-making. By combining the LEAM model and MCDA model, this study evaluates the relationship between GI services and socioeconomic growth, while spatially forecasting the geographies of GI demand in 2050. The resulting information reveals a potential degradation in ecosystem services over the region due to Chicago's sub-urbanization. This indicates that there would be a spatial shift in GI demand, emphasizing the need for comprehensive, dynamic GI strategies. This study further discusses the applications of evidence-based design in a studio environment. This study aims to contribute to the GeoDesign literature in terms of the creation of a more resilient urban environment by facilitating efficient evidence-based decision-making.

Site Selection of Carsharing Service by Spatial Analysis Method (공간분석기법을 이용한 Car-sharing 서비스 위치선정)

  • Do, Myungsik;Noh, Yun Seung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.22-28
    • /
    • 2013
  • This study aims to propose the location selection method of car-sharing services in Daejeon Metropolitan city. In order to select locations for car-sharing, Daejoen area was divided in $500m{\times}500m$ cell size using GIS Arc/Info 10, and input factors which may affect car-sharing service were determined, and then each input factor was standardized for analysis. The weight for each input factor was determined through experts' survey and index of goodness of fit was estimated in each cell ($500m{\times}500m$ size) using AHP method. Also, This study proposed the method to select 30 service facility location using Location-allocation Model in Network Analysis module. The proposed method for the location selection of car-sharing service in this study can be used for preliminary data for initial car-sharing introduction. Henceforward, appropriate demand forecasting and economic evaluation for the location selection of car-sharing service are needed for the further study.

An Improvement of Bottom Up Approach for Estimating the Mobile Emission Level (도로이동오염원 배출량 산정을 위한 Bottom-Up Approach 기법의 개선에 관한 연구)

  • Choe, Gi-Ju;Lee, Gyu-Jin;An, Seong-Chae
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.183-193
    • /
    • 2009
  • Air pollution due to vehicle exhaust gas is considered to be a main contributor to the issues of transportation & environment. Furthermore it is raising concern over life quality and public health and is also perceived as a global issue. This research aims at providing helping hands for both central and local governments to set up and promote efficient atmospheric quality improvement policies, with the help of the travel demand forecasting model and GIS. More specifically, it tries to produce the overall emission level with time and space-based high resolution framework. This research, based on bottom-up approach reflecting vehicular traffic characteristics, suggested an improved approach to estimating emission level, by using a traffic model with a total of vehicular mileage revised by surveyed value and atmosphere model. Summing up, using the method proposed, the improvement of the reliability of the emissions inventory from the mobile pollutions sources is expected by the proposed integrated paradigm of transportation and atmosphere modeling approach as a new alternative.

Air passenger demand forecasting for the Incheon airport using time series models (시계열 모형을 이용한 인천공항 이용객 수요 예측)

  • Lee, Jihoon;Han, Hyerim;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.87-95
    • /
    • 2020
  • The Incheon airport is a gateway to and from the Republic of Korea and has a great influence on the image of the country. Therefore, it is necessary to predict the number of airport passengers in the long term in order to maintain the quality of service at the airport. In this study, we compared the predictive performance of various time series models to predict the air passenger demand at Incheon Airport. From 2002 to 2019, passenger data include trend and seasonality. We considered the naive method, decomposition method, exponential smoothing method, SARIMA, PROPHET. In order to compare the capacity and number of passengers at Incheon Airport in the future, the short-term, mid-term, and long-term was forecasted by time series models. For the short-term forecast, the exponential smoothing model, which weighted the recent data, was excellent, and the number of annual users in 2020 will be about 73.5 million. For the medium-term forecast, the SARIMA model considering stationarity was excellent, and the annual number of air passengers in 2022 will be around 79.8 million. The PROPHET model was excellent for long-term prediction and the annual number of passengers is expected to be about 99.0 million in 2024.

A Study on the Control System of Maximum Demand Power Using Neural Network and Fuzzy Logic (신경망과 퍼지논리를 이용한 최대수요전력 제어시스템에 관한연구)

  • 조성원
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.420-425
    • /
    • 1999
  • The maximum demand controller is an electrical equipment installed at the consumer side of power system for monitoring the electrical energy consumed during every integrating period and preventing the target maximum demand (MD) being exceeded by disconnecting sheddable loads. By avoiding the peak loads and spreading the energy requirement the controller contributes to maximizing the utility factor of the generator systems. It results in not only saving the energy but also reducing the budget for constructing the natural base facilities by keeping thc number of generating plants ~ninimumT. he conventional MD controllers often bring about the large number of control actions during the every inteyating period and/or undesirable loaddisconnecting operations during the beginning stage of the integrating period. These make the users aviod the MD controllers. In this paper. fuzzy control technique is used to get around the disadvantages of the conventional MD control system. The proposed MD controller consists of the predictor module and the fuzzy MD control module. The proposed forecasting method uses the SOFM neural network model, differently from time series analysis, and thus it has inherent advantages of neural network such as parallel processing, generalization and robustness. The MD fuzzy controller determines the sensitivity of control action based on the time closed to the end of the integrating period and the urgency of the load interrupting action along the predicted demand reaching the target. The experimental results show that the proposed method has more accurate forecastinglcontrol performance than the previous methods.

  • PDF

Possibilities for Improvement in Long-term Predictions of the Operational Climate Prediction System (GloSea6) for Spring by including Atmospheric Chemistry-Aerosol Interactions over East Asia (대기화학-에어로졸 연동에 따른 기후예측시스템(GloSea6)의 동아시아 봄철 예측 성능 향상 가능성)

  • Hyunggyu Song;Daeok Youn;Johan Lee;Beomcheol Shin
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.19-36
    • /
    • 2024
  • The global seasonal forecasting system version 6 (GloSea6) operated by the Korea Meteorological Administration for 1- and 3-month prediction products does not include complex atmospheric chemistry-aerosol physical processes (UKCA). In this study, low-resolution GloSea6 and GloSea6 coupled with UKCA (GloSea6-UKCA) were installed in a CentOS-based Linux cluster system, and preliminary prediction results for the spring of 2000 were examined. Low-resolution versions of GloSea6 and GloSea6-UKCA are highly needed to examine the effects of atmospheric chemistry-aerosol owing to the huge computational demand of the current high resolution GloSea6. The spatial distributions of the surface temperature and daily precipitation for April 2000 (obtained from the two model runs for the next 75 days, starting from March 1, 2000, 00Z) were compared with the ERA5 reanalysis data. The GloSea6-UKCA results were more similar to the ERA5 reanalysis data than the GloSea6 results. The surface air temperature and daily precipitation prediction results of GloSea6-UKCA for spring, particularly over East Asia, were improved by the inclusion of UKCA. Furthermore, compared with GloSea6, GloSea6-UKCA simulated improved temporal variations in the temperature and precipitation intensity during the model integration period that were more similar to the reanalysis data. This indicates that the coupling of atmospheric chemistry-aerosol processes in GloSea6 is crucial for improving the spring predictions over East Asia.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Application to the Water and Sediment Model for the Management of Water Quality in Eutrophicated Seto Inland Sea, Japan (부영양화된 뢰호내해의 수질관리를 위한 수ㆍ저질예측모델의 적용)

  • Lee In Cheol;Chang Sun-duck;Kim Jong Kyu;Ukita Masao
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.96-108
    • /
    • 1998
  • The management of water quality and fishery resources with a major environmental problem in eutrophic coastal sea is studied. The numerical experiments using the water-sediment quality model (WSQM) were carried out for the management of water quality at the Seto Inland Sea in Japan. The results of long-term water quality simulation showed responses of seawater quality to input loads to vary in different localities. A formula roughly forecasting water qualify to estimate the effect of loading abatement was proposed. The simulation for the improvement of seawater quality showed the abatements of nutrient loads such as total phosphorus (TP) and total nitrogen (TN) as well as organic loads such as chemical oxygen demand (COD) to be peformed in the eastern Seto Inland Sea from Bisan Seto to Osaka Bay. On the other hand, it is indicated that the increase of loading leads to the increase of primary production. while not straightly to the increase of fish production for the catch of fisheries.

  • PDF

Simulation Modeling for Production Scheduling under Make-To-Order Production Environment : Focusing on the Flat Glass Production Environment (주문생산 방식의 생산계획 수립을 위한 시뮬레이션 모델 설계 : 판유리 제조 공정을 중심으로)

  • Choi, Yong-Hee;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.64-73
    • /
    • 2019
  • The manufacturing companies under Make-To-Order (MTO) production environment face highly variable requirements of the customers. It makes them difficult to establish preemptive production strategy through inventory management and demand forecasting. Therefore, the ability to establish an optimal production schedule that incorporates the various requirements of the customers is emphasized as the key success factor. In this study, we suggest a process of designing the simulation model for establishing production schedule and apply this model to the case of a flat glass processing company. The flat glass manufacturing industry is under MTO production environment. Academic research of flat glass industry is focused on minimizing the waste in the cutting process. In addition, in the practical view, the flat glass manufacturing companies tend to establish the production schedule based on the intuition of production manager and it results in failure of meeting the due date. Based on these findings, the case study aims to present the process of drawing up a production schedule through simulation modeling. The actual data of Korean flat glass processing company were used to make a monthly production schedule. To do this, five scenarios based on dispatching rules are considered and each scenario is evaluated by three key performance indicators for delivery compliance. We used B2MML (Business To Manufacturing Markup Language) schema for integrating manufacturing systems and simulations are carried out by using SIMIO simulation software. The results provide the basis for determining a suitable production schedule from the production manager's perspective.

Comparative Study of Performance of Deep Learning Algorithms in Particulate Matter Concentration Prediction (미세먼지 농도 예측을 위한 딥러닝 알고리즘별 성능 비교)

  • Cho, Kyoung-Woo;Jung, Yong-jin;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2021
  • The growing concerns on the emission of particulate matter has prompted a demand for highly reliable particulate matter forecasting. Currently, several studies on particulate matter prediction use various deep learning algorithms. In this study, we compared the predictive performances of typical neural networks used for particulate matter prediction. We used deep neural network(DNN), recurrent neural network, and long short-term memory algorithms to design an optimal predictive model on the basis of a hyperparameter search. The results of a comparative analysis of the predictive performances of the models indicate that the variation trend of the actual and predicted values generally showed a good performance. In the analysis based on the root mean square error and accuracy, the DNN-based prediction model showed a higher reliability for prediction errors compared with the other prediction models.