• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.039 seconds

Performance Evaluation of Stacking Models Based on Random Forest, XGBoost, and LGBM for Wind Power Forecasting (Random Forest, XGBoost, LGBM 조합형 Stacking 모델을 이용한 풍력 발전량 예측 성능 평가)

  • Hui-Chan Kim;Dae-Young Kim;Bum-Suk Kim
    • Journal of Wind Energy
    • /
    • v.15 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Wind power is highly variable due to the intermittent nature of wind. This can lead to power grid instability and decreased efficiency. Therefore, it is necessary to improve wind power prediction performance to minimize the negative impact on the power system. Recently, wind power prediction using machine learning has gained popularity, and ensemble models in machine learning have shown high prediction accuracy. RF, GB, XGB and LGBM are decision tree-based ensemble models and have high predictive performance in wind power, but these models have problems from over-fitting and strong dependence on certain variables. However, the stacking model can improve prediction performance by combining individual models and compensate for the shortcomings of each model. In this study, The MAE of RF, XGB and LGBM is 310.42 kWh, 217.07 kWh and 265.20 kWh, respectively, while the stacking model based on RF, XGB and LGBM is 202.33 kWh. Stacking models can improve prediction performance. Finally, it is expected to contribute to electricity supply and demand planning.

Prospective Supply and Demand of Medical Technologists in Korea through 2030 (임상병리사 인력의 수급전망과 정책방향)

  • Oh, Youngho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.511-524
    • /
    • 2018
  • The purpose of this study is to provide policy recommendations for manpower planning by forecasting the supply and demand of Medical Technologists. Supply was estimated using an in-and-out movement method with a demographic method based on a baseline projection model. Demand was projected according to a demand-based method using the number of clinico-pathologic examinations taken for Medical Technologists. Over- or undersupply of Medical Technologists will depend on the productivity scenario and assumptions and ultimately on governmental policy direction. In other words, whether the production of Medical Technologists is higher or lower than the current level depends on the government policy to consider insurance finances. In this study, we assessed 'productivity scenario 3' based on the productivity as of 2012, when the government's policy direction was not considered. Based on the demand scenario using the ARIMA model, the supply of Medical Technologists is expected to be excessive. This oversupply accounts for less than 10% of the total and therefore should not be a big problem. However, given that the employment rate of Medical Technologists is 60%, it is necessary to consider policies to utilize the unemployed. These measures should expand the employment opportunities for the unemployed. To this end, it is necessary to strengthen the functions of laboratories in the public health center, to increase the quota of Medical Technologists, to assure their status, to establish a permanent inspection system for outpatient patients, and to expand the export of Medical Technologists overseas.

Characteristics and Forecasting Models of Urban Traffic Generation in Seoul Metropolitan Area (수도권(首都圈)에 있어서 도시교통발생특성(都市交通發生特性)과 그 예측모형(豫測模型))

  • Kim, Dae Oung;Kim, Eon Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.45-55
    • /
    • 1986
  • This study proposes the explanatory indices of urban traffic for the purpose of solving the ambiguity of selection of the explanatory variables, which always raises problems in case of the travel-demand forecasting in the urban transportation planning, and develops optimal urban traffic generation models. The multiple regression models for objective traffic generation are developed by using the proposed explanatory inidces. Objective variables that can be explained by one explanatory variable are modified into simple regression type (Y=bX) in order to ensure the nonnegativity of traffic generation. Similarities are noted in the generaton characteristics of generated traffic from homogeneous land-use activity. Objective variables that can not be explained by multiple variable, such as trip attraction of school and trip generation of social-recreation, are classified by the characteristics of each zone. And traffic generation forecasting models are built as homogeneous zone group, the validity of each model being tested by a statistical method. It is desired that the forecasting precision is in improved by easy and simple method. Accordingly, trip generation rates are calculated from each land-use activity, and trip generation rates for practical application are proposed by considering their stability.

  • PDF

Time series and deep learning prediction study Using container Throughput at Busan Port (부산항 컨테이너 물동량을 이용한 시계열 및 딥러닝 예측연구)

  • Seung-Pil Lee;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.391-393
    • /
    • 2022
  • In recent years, technologies forecasting demand based on deep learning and big data have accelerated the smartification of the field of e-commerce, logistics and distribution areas. In particular, ports, which are the center of global transportation networks and modern intelligent logistics, are rapidly responding to changes in the global economy and port environment caused by the 4th industrial revolution. Port traffic forecasting will have an important impact in various fields such as new port construction, port expansion, and terminal operation. Therefore, the purpose of this study is to compare the time series analysis and deep learning analysis, which are often used for port traffic prediction, and to derive a prediction model suitable for the future container prediction of Busan Port. In addition, external variables related to trade volume changes were selected as correlations and applied to the multivariate deep learning prediction model. As a result, it was found that the LSTM error was low in the single-variable prediction model using only Busan Port container freight volume, and the LSTM error was also low in the multivariate prediction model using external variables.

  • PDF

A Study on Mixed RP/SP Models of Demand Forecasting for Rail Rapid Transit (급행철도 수요예측을 위한 RP와 SP 결합모형에 관한 연구)

  • Bae, Choon Bong;Jung, Byung Doo;Hwang, Young Ki;Kim, Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.671-677
    • /
    • 2011
  • A diversity of railway network function enhancement projects such as the double tracking, electrification, and direct operation have been actively executed to improve the railway service. When the new rapid transit is provided, how many people will use it instead of other transports? How will the railway choice behavior be changed? Accordingly, in this paper, the applicability of diverted travel demand forecast methods, by Revealed Preference(RP) and Stated Preference(SP) data was reviewed for Daegu metropolitan rail rapid transit service. As the result of combining RP and SP data, including the sequential and simultaneous approach, the total travel time and travel cost parameters are of the right sign and are highly significant. The simultaneous approach is more efficient in terms of the estimation of coefficients. In particular, methods to improve validity of the Mixed RP/SP models, when RP data is used proportionally, the diverted travel demand can be easily identified by railway fare and travel time service level. Therefore, it is considered that this will practically apply even in other regions as well as Daegu metropolitan railway.

Accessing socio-economic and climate change impacts on surface water availability in Upper Indus Basin, Pakistan with using WEAP model.

  • Mehboob, Muhammad Shafqat;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.407-407
    • /
    • 2019
  • According to Asian Development Bank report Pakistan is among water scarce countries. Climate scenario on the basis IPCC fifth assessment report (AR5) revealed that annual mean temperature of Pakistan from year 2010-2019 was $17C^o$ which will rise up to $21C^o$ at the end of this century, similarly almost 10% decrease of annual rainfall is expected at the end of the century. It is a changing task in underdeveloped countries like Pakistan to meet the water demands of rapidly increasing population in a changing climate. While many studies have tackled scarcity and stream flow forecasting of the Upper Indus Basin (UIB) Pakistan, very few of them are related to socio-economic and climate change impact on sustainable water management of UIB. This study investigates the pattern of current and future surface water availability for various demand sites (e.g. domestic, agriculture and industrial) under different socio-economic and climate change scenarios in Upper Indus Basin (UIB) Pakistan for a period of 2010 to 2050. A state-of-the-art planning tool Water Evaluation and Planning (WEAP) is used to analyze the dynamics of current and future water demand. The stream flow data of five sub catchment (Astore, Gilgit, Hunza, Shigar and Shoyke) and entire UIB were calibrated and validated for the year of 2006 to 2011 using WEAP. The Nash Sutcliffe coefficient and coefficient of determination is achieved ranging from 0.63 to 0.92. The results indicate that unmet water demand is likely to increase severe threshold and the external driving forces e.g. socio-economic and climate change will create a gap between supply and demand of water.

  • PDF

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

An Expert System for the Estimation of the Growth Curve Parameters of New Markets (신규시장 성장모형의 모수 추정을 위한 전문가 시스템)

  • Lee, Dongwon;Jung, Yeojin;Jung, Jaekwon;Park, Dohyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.17-35
    • /
    • 2015
  • Demand forecasting is the activity of estimating the quantity of a product or service that consumers will purchase for a certain period of time. Developing precise forecasting models are considered important since corporates can make strategic decisions on new markets based on future demand estimated by the models. Many studies have developed market growth curve models, such as Bass, Logistic, Gompertz models, which estimate future demand when a market is in its early stage. Among the models, Bass model, which explains the demand from two types of adopters, innovators and imitators, has been widely used in forecasting. Such models require sufficient demand observations to ensure qualified results. In the beginning of a new market, however, observations are not sufficient for the models to precisely estimate the market's future demand. For this reason, as an alternative, demands guessed from those of most adjacent markets are often used as references in such cases. Reference markets can be those whose products are developed with the same categorical technologies. A market's demand may be expected to have the similar pattern with that of a reference market in case the adoption pattern of a product in the market is determined mainly by the technology related to the product. However, such processes may not always ensure pleasing results because the similarity between markets depends on intuition and/or experience. There are two major drawbacks that human experts cannot effectively handle in this approach. One is the abundance of candidate reference markets to consider, and the other is the difficulty in calculating the similarity between markets. First, there can be too many markets to consider in selecting reference markets. Mostly, markets in the same category in an industrial hierarchy can be reference markets because they are usually based on the similar technologies. However, markets can be classified into different categories even if they are based on the same generic technologies. Therefore, markets in other categories also need to be considered as potential candidates. Next, even domain experts cannot consistently calculate the similarity between markets with their own qualitative standards. The inconsistency implies missing adjacent reference markets, which may lead to the imprecise estimation of future demand. Even though there are no missing reference markets, the new market's parameters can be hardly estimated from the reference markets without quantitative standards. For this reason, this study proposes a case-based expert system that helps experts overcome the drawbacks in discovering referential markets. First, this study proposes the use of Euclidean distance measure to calculate the similarity between markets. Based on their similarities, markets are grouped into clusters. Then, missing markets with the characteristics of the cluster are searched for. Potential candidate reference markets are extracted and recommended to users. After the iteration of these steps, definite reference markets are determined according to the user's selection among those candidates. Then, finally, the new market's parameters are estimated from the reference markets. For this procedure, two techniques are used in the model. One is clustering data mining technique, and the other content-based filtering of recommender systems. The proposed system implemented with those techniques can determine the most adjacent markets based on whether a user accepts candidate markets. Experiments were conducted to validate the usefulness of the system with five ICT experts involved. In the experiments, the experts were given the list of 16 ICT markets whose parameters to be estimated. For each of the markets, the experts estimated its parameters of growth curve models with intuition at first, and then with the system. The comparison of the experiments results show that the estimated parameters are closer when they use the system in comparison with the results when they guessed them without the system.

Short-Term Load Forecasting Model Development Through Analysis on Power Demand during Chuseok Holiday (추석 연휴 전력수요 특성 분석을 통한 단기수요 예측 모형 개발)

  • Kwon, Oh-Sung;Park, R.;Song, K.;Joo, Sung-Kwan;Park, Jeong-Do;Cho, Burm-Sup;Shin, Ki-Jun;Lee, Ik-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.608-609
    • /
    • 2011
  • 전력수요 예측 오차가 큰 추석 연휴 및 전, 후일 전력수요 예측의 정확성을 향상시키기 위해 과거 추석 연휴 및 전, 후일에 대한 전력수요 특성을 분석하고 최대/최소 전력 예측을 위한 퍼지 입력데이터 선정 방법과 24시간 예측을 위한 정규화에 필요한 입력 데이터 선정방법을 개발하여 퍼지 선형회귀분석 모델을 사용하여 2006년에서 2010년까지 5개년의 사례연구를 통해 알고리즘의 우수성을 검증하였다.

  • PDF

Air Pollution Forecasting Using Urban Transportation Planning Models and Air Pollution Dispersion Models (都市交通計劃 모델과 大氣汚染 擴散모델을 이용한 都市地域 大氣汚染 豫測)

  • 董宗仁;趙康來;金良均;兪 浣
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.31-40
    • /
    • 1986
  • Motor vehicle related air pollution has become more serious because of rapid increase of number of cars, specially in the urban area. The increase trend seems to be accelerated, however, the fact is that road conditions, parking facilities and traffic control systems are far behind coping with this situation. In spite of the lack of related basic data, urban transportation planning (UPT) and air pollution dispersion models were applied to predict air pollution level. In standard UPT model, trip generation, distribution, modal split and network assignment were estimated by experimental equations and appropriate models. The air pollution level in the central business area was believed to be higher and it will increase continuously due to the increase of traffic demand. To meet this situation, air pollution problem should be considered as a part of integrated plannings of urban plans or transportation plans as well as more stringent motor vehicle emission standards, have to be enforced.

  • PDF