• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.034 seconds

Forecasting for the Demand on Water Amenity Zones in the Large Rivers Based on Regional Characteristics and Monthly Variation (지역 특성 및 월간 변화를 고려한 대하천 수변 친수지구 이용수요 예측)

  • Suh, Myong-kyo;Rhee, Dong Sop
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.436-446
    • /
    • 2015
  • It is suggested investigating method about the existing state of demand in this study. The total demand of 357 water amenity zones in 2014 is estimated based on the growth curve models. The effects of population density and distances between water amenity zones and metropolises populated over 1 million are investigated on each river system. The suitability like RMSE and MAPE of logistic and gompertz models are considered to select more suitable model for each water amenity zone. Demand for water amenity zones in 2014 is seemed to be rather high at Han Gang river system and Chungcheongbukdo after analyzing. The influence of population density is rarely effective except Geum Gang river system. The influence of metropolis on the demand for water amenity zones is higher at Geum Gang river system than others.

Demand Prediction of Furniture Component Order Using Deep Learning Techniques (딥러닝 기법을 활용한 가구 부자재 주문 수요예측)

  • Kim, Jae-Sung;Yang, Yeo-Jin;Oh, Min-Ji;Lee, Sung-Woong;Kwon, Sun-dong;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Despite the recent economic contraction caused by the Corona 19 incident, interest in the residential environment is growing as more people live at home due to the increase in telecommuting, thereby increasing demand for remodeling. In addition, the government's real estate policy is also expected to have a visible impact on the sales of the interior and furniture industries as it shifts from regulatory policy to the expansion of housing supply. Accurate demand forecasting is a problem directly related to inventory management, and a good demand forecast can reduce logistics and inventory costs due to overproduction by eliminating the need to have unnecessary inventory. However, it is a difficult problem to predict accurate demand because external factors such as constantly changing economic trends, market trends, and social issues must be taken into account. In this study, LSTM model and 1D-CNN model were compared and analyzed by artificial intelligence-based time series analysis method to produce reliable results for manufacturers producing furniture components.

Suggesting a Demand Forecasting Technique Explicitly Considering Transfers In Light Rail Transit Protect Analysis (신교통수단 건설사업에 있어 환승을 반영한 교통수요 예측기법)

  • Kim, Ik-Gi;Han, Geun-Su;Bang, Hyeong-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.197-205
    • /
    • 2006
  • The study suggested a demand forecasting method which explicitly reflects transfer between various transport modes especially related light rail transit project with multi-modal transit system. The suggested method classifies several groups depending on characteristic of trips and applies different demand model for each group to explain travel pattern more realistically More specifically. the trips was classified by trips within the LRT route, trips between inside and outside of the LRT route. and through trips via the LRT route. The study also suggested a evaluation measurement of time saving due to the LRT construction, which are consistent along with the do-case and the do-nothing-case even though some mode shift could be happen after introducing the LRT.

A Study on the Conceptual Design of Integrated Management System for Public SW Project Information (공공 소프트웨어(SW) 사업정보 통합 관리체계의 개념적 설계에 관한 연구)

  • Shin, Kitae;Park, Chankwon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.199-216
    • /
    • 2019
  • The public SW market is 3 trillion won, which is less than 10% of the total SW market. However, due to the nature of the domestic market, it is an important market with a relatively large impact on small and medium-sized software companies. In this market, government is operating the Public SW Project Demand Forecasting System in order to support the marketing activities of small and medium sized SW companies and establish a fair market order. The current system has limitations such as lack of user convenience, insufficient analysis capability and less business connection. This study was conducted to identify the problems of these systems and to propose a new system for improving the convenience of users and expanding the information utilization of SMEs. To this end, we analyzed the requirements of each stakeholder. We proposed the 2-phased forecasting cycle, the management cycle, and the system life cycle of public SW projects and created a unified identifier (UID) so that the information of those projects can be identified and linked among them. As a result, an integrated reference model of project information management based on system life cycle was developed, which can explain the demand forecasting and project information, and the improved processes was also designed to implement them. Through the result of this study, it is expected that integrated management of public SW projects will be possible.

A Dynamic Market Potential Model for Forecasting the Mobile Telecommunication Service Market in Korea (국내 이동전화 서비스 시장 예측을 위한 동적 포화시장모형)

  • Jun, Duk-Bin;Park, Yoon-Seo;Kim, Seon-Kyoung;Park, Myoung-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.176-180
    • /
    • 2001
  • In Korea, the mobile telecommunication service market is expanding rapidly and becoming more competitive. For service providers in such a dynamic environment, it is very important to accurately forecast demand including market potential in order to work out marketing strategies. In this paper, we suggest a general approach to forecast the market potential using a multinomial logit model, which is applied to individual-level market survey data. Then we develop a dynamic market potential model that can adapt to changes in the external environment without requiring further market survey. The proposed model is applied to the mobile telecommunication service market in Korea.

  • PDF

An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network (인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법)

  • Park, Jinwoong;Moon, Jihoon;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.527-536
    • /
    • 2017
  • With the recent development of smart grid industry, the necessity for efficient EMS(Energy Management System) has been increased. In particular, in order to reduce electric load and energy cost, sophisticated electric load forecasting and efficient smart grid operation strategy are required. In this paper, for more accurate electric load forecasting, we extend the data collected at demand time into high time resolution and construct an artificial neural network-based forecasting model appropriate for the high time resolution data. Furthermore, to improve the accuracy of electric load forecasting, time series data of sequence form are transformed into continuous data of two-dimensional space to solve that problem that machine learning methods cannot reflect the periodicity of time series data. In addition, to consider external factors such as temperature and humidity in accordance with the time resolution, we estimate their value at the time resolution using linear interpolation method. Finally, we apply the PCA(Principal Component Analysis) algorithm to the feature vector composed of external factors to remove data which have little correlation with the power data. Finally, we perform the evaluation of our model through 5-fold cross-validation. The results show that forecasting based on higher time resolution improve the accuracy and the best error rate of 3.71% was achieved at the 3-min resolution.

A Regression based Unconstraining Demand Method in Revenue Management (수입관리에서 회귀모형 기반 수요 복원 방법)

  • Lee, JaeJune;Lee, Woojoo;Kim, Junghwan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.467-475
    • /
    • 2015
  • Accurate demand forecasting is a crucial component in revenue management(RM). The booking data of departed flights is used to forecast the demand for future departing flights; however, some booking requests that were denied were omitted in the departed flights data. Denied booking requests can be interpreted as censored in statistics. Thus, unconstraining demand is an important issue to forecast the true demands of future flights. Several unconstraining methods have been introduced and a method based on expectation maximization is considered superior. In this study, we propose a new unconstraining method based on a regression model that can entertain such censored data. Through a simulation study, the performance of the proposed method was evaluated with two representative unconstraining methods widely used in RM.

Performance Analysis of Electricity Demand Forecasting by Detail Level of Building Energy Models Based on the Measured Submetering Electricity Data (서브미터링 전력데이터 기반 건물에너지모델의 입력수준별 전력수요 예측 성능분석)

  • Shin, Sang-Yong;Seo, Dong-Hyun
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.627-640
    • /
    • 2018
  • Submetering electricity consumption data enables more detail input of end use components, such as lighting, plug, HVAC, and occupancy in building energy modeling. However, such an modeling efforts and results are rarely tried and published in terms of the estimation accuracy of electricity demand. In this research, actual submetering data obtained from a university building is analyzed and provided for building energy modeling practice. As alternative modeling cases, conventional modeling method (Case-1), using reference schedule per building usage, and main metering data based modeling method (Case-2) are established. Detail efforts are added to derive prototypical schedules from the metered data by introducing variability index. The simulation results revealed that Case-1 showed the largest error as we can expect. And Case-2 showed comparative error relative to Case-3 in terms of total electricity estimation. But Case-2 showed about two times larger error in CV (RMSE) in lighting energy demand due to lack of End Use consumption information.

Merchandise Management Using Web Mining in Business To Customer Electronic Commerce (기업과 소비자간 전자상거래에서의 웹 마이닝을 이용한 상품관리)

  • 임광혁;홍한국;박상찬
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.97-121
    • /
    • 2001
  • Until now, we have believed that one of advantages of cyber market is that it can virtually display and sell goods because it does not necessary maintain expensive physical shops and inventories. But, in a highly competitive environment, business model that does away with goods in stock must be modified. As we know in the case of AMAZON, leading companies already consider merchandise management as a critical success factor in their business model. That is, a solution to compete against one's competitors in a highly competitive environment is merchandise management as in the traditional retail market. Cyber market has not only past sales data but also web log data before sales data that contains information of path that customer search and purchase on cyber market as compared with traditional retail market. So if we can correctly analyze the characteristics of before sales patterns using web log data, we can better prepare for the potential customers and effectively manage inventories and merchandises. We introduce a systematic analysis method to extract useful data for merchandise management - demand forecasting, evaluating & selecting - using web mining that is the application of data mining techniques to the World Wide Web. We use various techniques of web mining such as clustering, mining association rules, mining sequential patterns.

  • PDF

Optimization of Integrated District Heating System (IDHS) Based on the Forecasting Model for System Marginal Prices (SMP) (계통한계가격 예측모델에 근거한 통합 지역난방 시스템의 최적화)

  • Lee, Ki-Jun;Kim, Lae-Hyun;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.479-491
    • /
    • 2012
  • In this paper we performed evaluation of the economics of a district heating system (DHS) consisting of energy suppliers and consumers, heat generation and storage facilities and power transmission lines in the capital region, as well as identification of optimal operating conditions. The optimization problem is formulated as a mixed integer linear programming (MILP) problem where the objective is to minimize the overall operating cost of DHS while satisfying heat demand during 1 week and operating limits on DHS facilities. This paper also propose a new forecasting model of the system marginal price (SMP) using past data on power supply and demand as well as past cost data. In the optimization, both the forecasted SMP and actual SMP are used and the results are analyzed. The salient feature of the proposed approach is that it exhibits excellent predicting performance to give improved energy efficiency in the integrated DHS.