• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.029 seconds

Development of Demand Forecasting Model for Public Bicycles in Seoul Using GRU (GRU 기법을 활용한 서울시 공공자전거 수요예측 모델 개발)

  • Lee, Seung-Woon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.1-25
    • /
    • 2022
  • After the first Covid-19 confirmed case occurred in Korea in January 2020, interest in personal transportation such as public bicycles not public transportation such as buses and subways, increased. The demand for 'Ddareungi', a public bicycle operated by the Seoul Metropolitan Government, has also increased. In this study, a demand prediction model of a GRU(Gated Recurrent Unit) was presented based on the rental history of public bicycles by time zone(2019~2021) in Seoul. The usefulness of the GRU method presented in this study was verified based on the rental history of Around Exit 1 of Yeouido, Yeongdengpo-gu, Seoul. In particular, it was compared and analyzed with multiple linear regression models and recurrent neural network models under the same conditions. In addition, when developing the model, in addition to weather factors, the Seoul living population was used as a variable and verified. MAE and RMSE were used as performance indicators for the model, and through this, the usefulness of the GRU model proposed in this study was presented. As a result of this study, the proposed GRU model showed higher prediction accuracy than the traditional multi-linear regression model and the LSTM model and Conv-LSTM model, which have recently been in the spotlight. Also the GRU model was faster than the LSTM model and the Conv-LSTM model. Through this study, it will be possible to help solve the problem of relocation in the future by predicting the demand for public bicycles in Seoul more quickly and accurately.

Forecasting of Iron Ore Prices using Machine Learning (머신러닝을 이용한 철광석 가격 예측에 대한 연구)

  • Lee, Woo Chang;Kim, Yang Sok;Kim, Jung Min;Lee, Choong Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-72
    • /
    • 2020
  • The price of iron ore has continued to fluctuate with high demand and supply from many countries and companies. In this business environment, forecasting the price of iron ore has become important. This study developed the machine learning model forecasting the price of iron ore a one month after the trading events. The forecasting model used distributed lag model and deep learning models such as MLP (Multi-layer perceptron), RNN (Recurrent neural network) and LSTM (Long short-term memory). According to the results of comparing individual models through metrics, LSTM showed the lowest predictive error. Also, as a result of comparing the models using the ensemble technique, the distributed lag and LSTM ensemble model showed the lowest prediction.

Development of Daily Peak Power Demand Forecasting Algorithm using ELM (ELM을 이용한 일별 최대 전력 수요 예측 알고리즘 개발)

  • Ji, Pyeong-Shik;Kim, Sang-Kyu;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.169-174
    • /
    • 2013
  • Due to the increase of power consumption, it is difficult to construct an accurate prediction model for daily peak power demand. It is very important work to know power demand in next day to manage and control power system. In this research, we develop a daily peak power demand prediction method based on Extreme Learning Machine(ELM) with fast learning procedure. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

A Choice-Based Multi-Product Diffusion Model Incorporating Replacement Demand (대체수요를 고려한 선택관점의 다제품 확산모형)

  • Kim, Jeong-Il;Jeon, Deok-Bin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.161-164
    • /
    • 2006
  • The sales of consumer durables are composed of first time purchases and replacement purchases. Since the sales for most mature durable products are dominated by replacement sales, it is necessary to develop a model incorporating replacement component of sales in order to forecast total sales accurately. Several single product diffusion models incorporating replacement demand have been developed, but research addressing the multi-product diffusion models has not considered replacement sales. In this paper, we propose a model based on consumer choice behavior that simultaneously captures the diffusion and the replacement process for multi-product relationships. The proposed model enables the division of replacement sales into repurchase by previous users and transition purchase by users of different products. As a result, the model allows the partitioning of the total sales according to the customer groups (first-time buyers, repurchase buyers, and transition buyers), which allows companies to develop their production and marketing plans based on their customer mix. We apply the proposed model to the Korean automobile market, and compare the fitting and forecasting performance with other Bass-type multi-product models.

  • PDF

A Study on a Forecasting the Demand for the Future Mobile Communication Service by Integrating the Mobile Communication Technology (이동통신기술과의 연관성을 고려한 차세대 이동통신서비스의 수요예측에 관한 연구)

  • 주영진;김선재
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.1
    • /
    • pp.87-99
    • /
    • 2004
  • In this paper, we have developed a technology-service relationship model which describes the diffusion process of a group of services and relevant technologies, and have applied the developed model to the prediction of the number of subscribers to the next generation mobile service. The technology-service relationship model developed in this paper incorporates the developing process of relevant technologies, a supply-side factor, into the diffusion process of specific services, while many diffusion models and multi-generation diffusion models in previous researches are mainly reflect the demand-side factors. So, the proposed model could effectively applied to the telecommunication services where the developing of the relevant technologies are very essential to the service Penetration. In our application, the Proposed model provides a competitive substitution between the next generation mobile service and the traditional mobile service.

Sales Forecasting of Competing Durable Products : The Impact of Market Response and Replacement Demand (경쟁 환경하에서의 내구재의 판매예측에 관한 연구 : 소비자의 반응 및 제품대체에 의한 영향)

  • Park, Seong-Ki;Jun, Duk-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.1
    • /
    • pp.45-58
    • /
    • 1991
  • The importance of marketing mix variables, replacement demand, and competition in a new product growth model has been cited by many researchers. In this paper, these factors are integrated with an aim to model company sales of competing durables. Based on the most popular new product growth model, numerous extensions and incorporations of contributions from related research fields are tried. Model parameters are estimated by the Kalman filter. And, the proposed model is applied to the sales of four consumer durable goods. Empirical applications show the benefits, as well as the limitations of the proposed model.

  • PDF

On Parameter Estimation of Growth Curves for Technological Forecasting by Using Non-linear Least Squares

  • Ko, Young-Hyun;Hong, Seung-Pyo;Jun, Chi-Hyuck
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.89-104
    • /
    • 2008
  • Growth curves including Bass, Logistic and Gompertz functions are widely used in forecasting the market demand. Nonlinear least square method is often adopted for estimating the model parameters but it is difficult to set up the starting value for each parameter. If a wrong starting point is selected, the result may lead to erroneous forecasts. This paper proposes a method of selecting starting values for model parameters in estimating some growth curves by nonlinear least square method through grid search and transformation into linear regression model. Resealing the market data using the national economic index makes it possible to figure out the range of parameters and to utilize the grid search method. Application to some real data is also included, where the performance of our method is demonstrated.

Forecasting attendance in the Korean professional baseball league using GARCH models (일반화 자기회귀 조건부 이분산 모형을 이용한 한국프로야구 관중수의 예측)

  • Lee, Jang-Taek;Bang, So-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1041-1049
    • /
    • 2010
  • In Korean professional baseball, attendance is the largest source of revenue for development of professional baseball and the highest concern of professional baseball teams. So, if there is demand forecasting model, it will be helpful for pennant chasers to work out the strategies for drawing attendance. For this reason, this research intends to suggest the model which estimates Korean professional baseball's attendance and uses all usable variables which have an effect on attendance in limited circumstances. We supposed that dependent variable is attendance as well as several independent variables and error term are homoscedastic variance. And then, we compared the models which assume conditional heteroscedastic variance like GARCH and EGARCH with GARCH-t models which use the assumption that error term's distribution follows student-t distribution. In result of that, we could confirm that the models which were made by using GARCH(1,1)-t made estimates the most accurately among the several models considered.

Long-Term Projection of Demand for Reverse Mortgage Using the Bass Diffusion Model in Korea (Bass 확산모형을 활용한 국내 주택연금의 중·장기 수요예측)

  • Yang, Jin-Ah;Min, Daiki;Choi, Hyung-Suk
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.42 no.1
    • /
    • pp.29-41
    • /
    • 2017
  • Korea is expected to become a super-aged society by 2050. Given an aging population and the increasing pressure for the early retirement, a sufficient social safety net for elderly population becomes important. The Korean government introduced public reverse mortgage program in 2007, which is a product for aging seniors and the elderly, The number of reverse mortgage subscribers has also steadily grown. The demand continues to grow, but the reverse mortgage over a long period of time is a highly uncertain and risky product in the position of guarantee or lending institution. Thus, suitable demand prediction of the reverse mortgage subscribers is necessary for stable and sustainable operation. This study uses a Bass diffusion model to forecast the long-term demand for reverse mortgage and provides insight into reverse mortgage by forecasting demand for stability and substantiality of the loan product. We represent the projections of new subscribers on the basis of the data obtained from Korea Housing Finance Corporation. Results show that potential market size of Korean reverse mortgage reaches approximately 760,000-1,160,000 households by 2020. We validate the results by comparing the estimate of the cumulative number of subscribers with that found in literature.