• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.029 seconds

Forecasting of Yeongdeok Tourist by Seasonal ARIMA Model (계절 아리마 모형을 이용한 관광객 예측 -경북 영덕지역을 대상으로-)

  • Son, Eun-Ho;Park, Duk-Byeong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.19 no.2
    • /
    • pp.301-320
    • /
    • 2012
  • The study uses a seasonal ARIMA model to forecast the number of tourists of Yeongdeok in an uni-variable time series. The monthly data for time series were collected ranging from 2006 to 2011 with some variation between on-season and off-season tourists in Yeongdeok county. A total of 72 observations were used for data analysis. The forecast multiplicative seasonal ARIMA(1,0,0)$(0,1,1)_{12}$ model was found the most appropriate one. Results showed that the number of tourists was 10,974 thousands in 2012 and 13,465 thousands in 2013, It was suggested that the grasping forecast model is very important in respect of how experts in tourism development in Yeongdeok county, policy makers or planners would establish strategies to allocate service in Yeongdeok tourist destination and provide tourism facilities efficiently.

Development of Basin-wide runoff Analysis Model for Integrated Real-time Water Management (실시간 물 관리 운영을 위한 유역 유출 모의 모형 개발)

  • Hwang, Man-Ha;Maeng, Sung-Jin;Ko, Ick-Hwan;Park, Jeong-In;Ryoo, So-Ra
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.507-510
    • /
    • 2003
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. A short-term water demand forecasting technology will be developed taking into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

A Study on Methodology for Improving Demand Forecasting Models in the Designated Driver Service Market (대리운전 시장의 지역별 수요 예측 모형의 성능 향상을 위한 방법론 연구)

  • Min-Seop Kim;Ki-Kun Park;Jae-Hyeon Heo;Jae-Eun Kwon;Hye-Rim Bae
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • Nowadays, the Designated Driver Services employ dynamic pricing, which adapts in real-time based on nearby driver availability, service user volume, and current weather conditions during the user's request. The uncertain volatility is the main cause of price increases, leading to customer attrition and service refusal from driver. To make a good Designated Driver Services, development of a demand forecasting model is required. In this study, we propose developing a demand forecasting model using data from the Designated Driver Service by considering normal and peak periods, such as rush hour and rush day, as prior knowledge to enhance the model performance. We propose a new methodology called Time-Series with Conditional Probability(TSCP), which combines conditional probability and time-series models to enhance performance. Extensive experiments have been conducted with real Designated Driver Service data, and the result demonstrated that our method outperforms the existing time-series models such as SARIMA, Prophet. Therefore, our study can be considered for decision-making to facilitate proactive response in Designated Driver Services.

Comparison of Power Consumption Prediction Scheme Based on Artificial Intelligence (인공지능 기반 전력량예측 기법의 비교)

  • Lee, Dong-Gu;Sun, Young-Ghyu;Kim, Soo-Hyun;Sim, Issac;Hwang, Yu-Min;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.161-167
    • /
    • 2019
  • Recently, demand forecasting techniques have been actively studied due to interest in stable power supply with surging power demand, and increase in spread of smart meters that enable real-time power measurement. In this study, we proceeded the deep learning prediction model experiments which learns actual measured power usage data of home and outputs the forecasting result. And we proceeded pre-processing with moving average method. The predicted value made by the model is evaluated with the actual measured data. Through this forecasting, it is possible to lower the power supply reserve ratio and reduce the waste of the unused power. In this paper, we conducted experiments on three types of networks: Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short Term Memory (LSTM) and we evaluate the results of each scheme. Evaluation is conducted with following method: MSE(Mean Squared Error) method and MAE(Mean Absolute Error).

Monthly Hanwoo supply and forecasting models

  • Hyungwoo, Lee;Seonu, Ji;Tongjoo, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.797-806
    • /
    • 2021
  • As the number of scaled-up ranches increased and agile responses to market changes became possible, decision-making by Hanwoo cattle farms also began to affect short-term shipments. Considering the changing environment of the Hanwoo supply market and the response speed of producers, it is necessary quickly to grasp the forecast ahead of time and to respond accordingly in an effort to stabilize supply and demand in the Hanwoo market. In this study, short-term forecasting model centered on the supply of Hanwoo was established. The analysis conducted here indicates that the slaughter of Hanwoo males increases by 0.248 as the number of beef cattle raised over 29 months of age in the previous month increases by one, and 0.764 Hanwoo females were slaughtered under average conditions for every Hanwoo male slaughtered. With regard to time, the slaughtering of Hanwoo was higher in January and August, which are months known for holiday food preparation activities for the New Year and Chuseok in Korea, respectively. Simulations indicated that errors were within 10% in all simulations performed through the Hanwoo supply model. Accordingly, it is considered that the estimation results from the supply model devised in this study are reliable and that the model has good structural stability.

RNN NARX Model Based Demand Management for Smart Grid

  • Lee, Sang-Hyun;Park, Dae-Won;Moon, Kyung-Il
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.11-14
    • /
    • 2014
  • In the smart grid, it will be possible to communicate with the consumers for the purposes of monitoring and controlling their power consumption without disturbing their business or comfort. This will bring easier administration capabilities for the utilities. On the other hand, consumers will require more advanced home automation tools which can be implemented by using advanced sensor technologies. For instance, consumers may need to adapt their consumption according to the dynamically varying electricity prices which necessitates home automation tools. This paper tries to combine neural network and nonlinear autoregressive with exogenous variable (NARX) class for next week electric load forecasting. The suitability of the proposed approach is illustrated through an application to electric load consumption data. The suggested system provides a useful and suitable tool especially for the load forecasting.

Forecasting of Urban Daily Water Demand by Using Backpropagation Algorithm Neural Network (역전파 알고리즘을 이용한 상수도 일일 급수량 예측)

  • Rhee, Kyoung Hoon;Moon, Byoung Seok;Oh, Chang Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 1998
  • The purpose of this study is to establish a method of estimating the daily urban water demend using Backpropagation algorithm is part of ANN(Artificial Neural Network). This method will be used for the development of the efficient management and operations of the water supply facilities. The data used were the daily urban water demend, the population and weather conditions such as treperarture, precipitation, relative humidity, etc. Kwangju city was selected for the case study area. We adjusted the weights of ANN that are iterated the training data patterns. We normalized the non-stationary time series data [-1,+1] to fast converge, and choose the input patterns by statistical methods. We separated the training and checking patterns form input date patterns. The performance of ANN is compared with multiple-regression method. We discussed the representation ability the model building process and the applicability of ANN approach for the daily water demand. ANN provided the reasonable results for time series forecasting.

  • PDF

Air Passenger Demand Forecasting and Baggage Carousel Expansion: Application to Incheon International Airport (항공 수요예측 및 고객 수하물 컨베이어 확장 모형 연구 : 인천공항을 중심으로)

  • Yoon, Sung Wook;Jeong, Suk Jae
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2014
  • This study deals with capacity expansion planning of airport infrastructure in view of economic validation that reflect construction costs and social benefits according to the reduction of passengers' delay time. We first forecast the airport peak-demand which has a seasonal and cyclical feature with ARIMA model that has been one of the most widely used linear models in time series forecasting. A discrete event simulation model is built for estimating actual delay time of passengers that consider the passenger's dynamic flow within airport infrastructure after arriving at the airport. With the trade-off relationship between cost and benefit, we determine an economic quantity of conveyor that will be expanded. Through the experiment performed with the case study of Incheon international airport, we demonstrate that our approach can be an effective method to solve the airport expansion problem with seasonal passenger arrival and dynamic operational aspects in airport infrastructure.

Forecasting the Demand Areas of a Factory Site: Based on a Statistical Model and Sampling Survey (공장용지 수요 추정 모형 개발 및 수요예측)

  • Jeong, Hyeong-Chul;Han, Geun-Shik;Kim, Seong-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.465-475
    • /
    • 2011
  • In this paper, we have considered the problems of the estimation of the gross areas of a factory site relating to the areas of industrial complex lands based on a statistical forecasting model and the results of a sampling survey. In respect to the data of a gross areas of a factory site, we have only the sizes from 1981-2003. In 2009, the Korea Industrial Complex Corp. conducted a sampling survey to estimate its bulk size, and investigate the demands of its sizes for the next five years. In this study, we have adopted the sampling survey results, and have created a statistical growth model for the gross areas of a factory site to improve the prediction for the areas of a factory site. The three-different parts of data: the results of areas of a factory site by Korea National Statistical Office, imputation results by the statistical forecasting model, and sampling survey results have used as the basis for analysis. The combination of the three-different parts of data has created a new forecasting value of the areas of a factory site through the spline smoothing method.

Analysis of the Recall Demand Pattern of Imported Cars and Application of ARIMA Demand Forecasting Model (수입자동차 리콜 수요패턴 분석과 ARIMA 수요 예측모형의 적용)

  • Jeong, Sangcheon;Park, Sohyun;Kim, Seungchul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.93-106
    • /
    • 2020
  • This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.