• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.031 seconds

Forecasting Demand for Food & Beverage by Using Univariate Time Series Models: - Whit a focus on hotel H in Seoul - (단변량 시계열모형을 이용한 식음료 수요예측에 관한 연구 - 서울소재 특1급 H호텔 사례를 중심으로 -)

  • 김석출;최수근
    • Culinary science and hospitality research
    • /
    • v.5 no.1
    • /
    • pp.89-101
    • /
    • 1999
  • This study attempts to identify the most accurate quantitative forecasting technique for measuring the future level of demand for food & beverage in super deluxe hotel in Seoul, which will subsequently lead to determining the optimal level of purchasing food & beverage. This study, in detail, examines the food purchasing system of H hotel, reviews three rigorous univariate time series models and identify the most accurate forecasting technique. The monthly data ranging from January 1990 to December 1997 (96 observations) were used for the empirical analysis and the 1998 data were left for the comparison with the ex post forecast results. In order to measure the accuracy, MAPE, MAD and RMSE were used as criteria. In this study, Box-Jenkins model was turned out to be the most accurate technique for forecasting hotel food & beverage demand among selected models generating 3.8% forecast error in average.

  • PDF

The Demand Forecasting of Game Products by Bass Model (Bass모델을 응용한 게임제품의 수요예측)

  • Lee, Ji-Hun;Jung, Heon-Soo;Kim, Hyoung-Gil;Jang, Chang-Ik
    • Journal of Korea Game Society
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • This study introduces and empirically test the validity of Bass model that helps demand forecasting of new game products. The application of Bass model to new game products show that Bass model predicts the demand of new game accurately. In particular, it showed very good predictability of on-line game products.

  • PDF

Demand Forecasting Model for Bike Relocation of Sharing Stations (공유자전거 따릉이 재배치를 위한 실시간 수요예측 모델 연구)

  • Yoosin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.107-120
    • /
    • 2023
  • The public bicycle of Seoul, Ttareungyi, was launched at October 2015 to reduce traffic and carbon emissions in downtown Seoul and now, 2023 Oct, the cumulative number of user is upto 4 million and the number of bike is about 43,000 with about 2700 stations. However, super growth of Ttareungyi has caused the several problems, especially demand/supply mismatch, and thus the Seoul citizen has been complained about out of stock. In this point, this study conducted a real time demand forecasting model to prevent stock out bike at stations. To develop the model, the research team gathered the rental·return transaction data of 20,000 bikes in whole 1600 stations for 2019 year and then analyzed bike usage, user behavior, bike stations, and so on. The forecasting model using machine learning is developed to predict the amount of rental/return on each bike station every hour through daily learning with the recent 90 days data with the weather information. The model is validated with MAE and RMSE of bike stations, and tested as a prototype service on the Seoul Bike Management System(Mobile App) for the relocation team of Seoul City.

Comparison of forecasting performance of time series models for the wholesale price of dried red peppers: focused on ARX and EGARCH

  • Lee, Hyungyoug;Hong, Seungjee;Yeo, Minsu
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.859-870
    • /
    • 2018
  • Dried red peppers are a staple agricultural product used in Korean cuisine and as such, are an important aspect of agricultural producers' income. Correctly forecasting both their supply and demand situations and price is very important in terms of the producers' income and consumer price stability. The primary objective of this study was to compare the performance of time series forecasting models for dried red peppers in Korea. In this study, three models (an autoregressive model with exogenous variables [ARX], AR-exponential generalized autoregressive conditional heteroscedasticity [EGARCH], and ARX-EGARCH) are presented for forecasting the wholesale price of dried red peppers. As a result of the analysis, it was shown that the ARX model and ARX-EGARCH model, each of which adopt both the rolling window and the adding approach and use the agricultural cooperatives price as the exogenous variable, showed a better forecasting performance compared to the autoregressive model (AR)-EGARCH model. Based on the estimation methods and results, there was no significant difference in the accuracy of the estimation between the rolling window and adding approach. In the case of dried red peppers, there is limitation in building the price forecasting models with a market-structured approach. In this regard, estimating a forecasting model using only price data and identifying the forecast performance can be expected to complement the current pricing forecast model which relies on market shipments.

Cluster Analysis of Daily Electricity Demand with t-SNE

  • Min, Yunhong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.5
    • /
    • pp.9-14
    • /
    • 2018
  • For an efficient management of electricity market and power systems, accurate forecasts for electricity demand are essential. Since there are many factors, either known or unknown, determining the realized loads, it is difficult to forecast the demands with the past time series only. In this paper we perform a cluster analysis on electricity demand data collected from Jan. 2000 to Dec. 2017. Our purpose of clustering on electricity demand data is that each cluster is expected to consist of data whose latent variables are same or similar values. Then, if properly clustered, it is possible to develop an accurate forecasting model for each cluster separately. To validate the feasibility of this approach for building better forecasting models, we clustered data with t-SNE. To apply t-SNE to time series data effectively, we adopt the dynamic time warping as a similarity measure. From the result of experiments, we found that several clusters are well observed and each cluster can be interpreted as a mix of well-known factors such as trends, seasonality and holiday effects and other unknown factors. These findings can motivate the approaches which build forecasting models with respect to each cluster independently.

A Study on Car Ownership Forecasting Model using Category Analysis at High Density Mixed Use District in Subway Area

  • Kim, Tae-Gyun;Byun, Wan-Hee;Lee, Young-Hoon
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.217-226
    • /
    • 2011
  • The Seoul Metropolitan Government is striving to minimize the amount of traffic according to the supply of apartment houses along with the solution of housing shortage for the low income people through high density development near the subway area. Therefore, a stronger policy is necessary to control the traffic of the passenger cars in a subway area for the successful high density development focusing on public transportation, and especially, the estimation of the demand of cars with high reliability is necessary to control the demand of parking such as the limited supply of parking lot. Accordingly, this study developed car ownership forecasting model using Look-up Table among category analyses which are easy to be applied and have high reliability. The estimation method using Look-up-Table is possible to be applied to both measurable and immeasurable types, easy to accumulate data, and features the flexible responding depending on the changes of conditions. This study established Look-up-Table model through the survey of geographical location, the scale of housing, the accessible distance to a subway station and to a bus station, the number of bus routes, and the number of car owned with data regarding 242 blocks in Seoul City as subjects.

An Empirical Comparison of Initialization Methods for Holt-Winters Model with Railway Passenger Demand Data (철도여객수요예측을 위한 Holt-Winters모형의 초기값 설정방법 비교)

  • 김성호;홍순흠
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.97.1-103
    • /
    • 2001
  • Railway passenger demand forecasts may be used directly, or as inputs to other optimization model which is use the demand forecasts to produce estimates of other activities. The optimization models require demand forecasts at the most detailed level. In this environment exponential smoothing forecasting methods such as Holt-Winters are appropriate because it is simple and inexpensive in terms of computation. There are several initialization methods for Holt-Winters Model. The purpose of this paper is to compare the initialization methods for Holt-Winters model.

  • PDF

Effectiveness Evaluation of Demand Forecasting Based Inventory Management Model for SME Manufacturing Factory (중소기업 제조공장의 수요예측 기반 재고관리 모델의 효용성 평가)

  • Kim, Jeong-A;Jeong, Jongpil;Lee, Tae-hyun;Bae, Sangmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • SMEs manufacturing Factory, which are small-scale production systems of various types, mass-produce and sell products in order to meet customer needs. This means that the company has an excessive amount of material supply to reduce the loss due to lack of inventory and high inventory maintenance cost. And the products that fail to respond to the demand are piled up in the management warehouse, which is the reality that the storage cost is incurred. To overcome this problem, this paper uses ARIMA model, a time series analysis technique, to predict demand in terms of seasonal factors. In this way, demand forecasting model based on economic order quantity model was developed to prevent stock shortage risk. Simulation is carried out to evaluate the effectiveness of the development model and to demonstrate the effectiveness of the development model as applied to SMEs in the future.

Errors and Causes in Railroad Demand Forecasting (the Incheon International Airport Railroad) (철도수요예측 오차현황 및 원인분석에 관한 연구 (인천국제공항철도 사례를 중심으로))

  • NamKung, Baek-Kyu;Chung, Sung-Bong;Park, Cho-Rong;Lee, Cheol-Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2309-2318
    • /
    • 2010
  • It is a plan the government increases a railroad section SOC investment, and to activate railroad construction while a railroad wins the spotlight with green transportation. But an error of the demand forecast that is a base of a railroad investment evaluation follows in occurring big, there is it with an operation with an obstacle of a railroad investment. Case of the Incheon International Airport Railroad which went into operation recently, While a present transportation demand showed about 10% than a demand forecasted in a past conference, it was magnified in a social problem. A lot of research was gone on in road project about traffic demand forecast and error, a study to find out the error cause is an insufficient situation although errors of a railroad occurs big. So, this study looked for errors and causes about trip generation model and modes sharing model of railroad demand forecast but it was defined causes so that it can occur similar problems in the future. Especially it investigated causes after comparing rate of development plan for the realization and O/D size in trip generation model and after comparing rate of modes sharing of past and current and conducting a survey for airport users. In conclusion, it suggested method to reduce errors of railroad demand forecasting in the future.

  • PDF

A Study on Intermittent Demand Forecasting of Patriot Spare Parts Using Data Mining (데이터 마이닝을 이용한 패트리어트 수리부속의 간헐적 수요 예측에 관한 연구)

  • Park, Cheonkyu;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.234-241
    • /
    • 2021
  • By recognizing the importance of demand forecasting, the military is conducting many studies to improve the prediction accuracy for repair parts. Demand forecasting for repair parts is becoming a very important factor in budgeting and equipment availability. On the other hand, the demand for intermittent repair parts that have not constant sizes and intervals with the time series model currently used in the military is difficult to predict. This paper proposes a method to improve the prediction accuracy for intermittent repair parts of the Patriot. The authors collected intermittent repair parts data by classifying the demand types of 701 repair parts from 2013 to 2019. The temperature and operating time identified as external factors that can affect the failure were selected as input variables. The prediction accuracy was measured using both time series models and data mining models. As a result, the prediction accuracy of the data mining models was higher than that of the time series models, and the multilayer perceptron model showed the best performance.