• 제목/요약/키워드: Delta robot

검색결과 21건 처리시간 0.025초

사용자 안전요소를 고려한 상지 재활치료용 2축 델타로봇 개발 (Development of a 2-axis Delta Robot for Upper-limb Rehabilitation with Considering User Safety)

  • 백승환;이준식
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.15-26
    • /
    • 2023
  • In this study, an end-effector robot which is a two-axis delta robot type for upper-limb rehabilitation is designed. It is not only rehabilitation functions that has designed robot but also mechanical and electrical safety devices were constructed to ensure patient safety. By constructing the two-axis delta robot is combined with an LM guide, the operating range and rigidity required for rehabilitation were secured. The electrical safety system which is required for the medical robot was designed, and a safety strategy was established to ensure patient safety and it is applied in the integrated safety circuit. The safety is considered in whole design process from the robot's mechanical design to the electric control unit.

경량 델타로봇의 모델링 및 모션 제어 (Modeling and Motion-control for a Light-weight Delta Robot)

  • 김성일;홍준호;신동원
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.155-162
    • /
    • 2018
  • Delta robots are usually used for industrial manufacturing, but heavy weight and expensive price have been obstacles to rapid propagation of robots in the field. The goal of this research is to make light-weight and price-competitive delta robots. To reduce the weight, we used plastic material for the arm link, and to reduce the price, we used a step-motor as the main actuator. First we formulated the equations of inverse kinematics for the designed delta robot and then verified these equations by using multibody-dynamics simulation. An algorithm of motion control was developed and applied to the motion-processing unit using a timer-interrupt of 8 milliseconds. Finally, we tested the performance of the new delta robot by checking its control of motion along line segments.

Delta 고속 병렬로봇의 동역학 모델링 및 제어 (Dynamics Modeling and Control of a Delta High-speed Parallel Robot)

  • 김한성
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a simplified dynamics model, dynamics simulations, and computed torque control experiments of the Delta high-speed parallel robot. Using the typical Newton-Euler method, a simplified but accurate dynamics model with practical assumptions is derived. Accuracy and fast calculations of the dynamics are essential in the computed torque control for high-speed applications. It was found that the simplified dynamics equation is in very god agreement with the ADAMS model, and the calculation time of the inverse kinematics and inverse dynamics is about 0.04 msec. From the dynamics simulations, the cycle trajectory along the y-axis requires less peak motor torque and a lower angular velocity and less power than that along the x-axis. The computed torque control scheme can reduce the position error by half as compared to a PD control scheme. Finally, the developed Delta parallel robot prototype, half the size of the ABB Flexpicker robot, can achieve a cycle time of 0.43 sec with a 1.0kg payload.

레이저 트래커를 이용한 Delta 병렬로봇의 기구학적 보정 (Kinematic Calibration of Delta Parallel Robot Using Laser Tracker)

  • 정성훈;최준우;김한성
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.947-952
    • /
    • 2021
  • In this paper, the simplified kinematic error model for Delta parallel robot is presented, which can enable the analytical forward kinematics essentially for kinematic calibration calculations instead of the numerical one. The simplified kinematic error model is proposed and the forward kinematics including the error parameters is analytically derived. The kinematic calibration algorithm of the Delta parallel robot with 90 degree arrangement using laser tracker and the experiment result are presented.

4자유도 고속 병렬 로봇의 해석 및 설계 (Analysis and Design of a Novel 4-DOF High-Speed Parallel Robot)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.206-215
    • /
    • 2016
  • Delta parallel robots are now widely used for high-speed applications. However, typical Delta robots, such as ABB Flexpicker suffer from rotating axis with passive prismatic joint subjected to critical speed and so requiring careful maintenance. In this paper, a novel 4-DOF high-speed parallel robot with four legs is presented, which consists of three legs with 90 degree arrangement for translational motions and one remaining leg with rack & pinion gears for rotational motion. The inverse kinematics, velocity, acceleration, statics, and inverse dynamics have been analyzed. From the workspace analysis and inverse dynamics simulation for 0.43 sec cycle time, the 4-axis parallel robot prototype with 12kg payload has been designed. In the future research, computed torque control methods will be developed for the prototype.

Tele-Operation of Dual Arm Robot Using 3-D vision

  • Shibagami, Genjirou;Itoh, Akihiko;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.386-390
    • /
    • 1998
  • A master-slave system is proposed as a teaching device for a dual arm robot. The slave robots are remotely controlled by two delta-type master arms. In order to help the operator to observe the target object from the desired position and desired direction, cameras are mounted on a specialized manipulator, Movements of two slave arms are coordinated with that of the cameras. Due to this coordinated movements, the operator needs not to care the geometrical relation between the cameras and the slave robots.

  • PDF

델타 로봇의 전류-위치 Cascade PID 제어 (The Current-Position Cascade PID Control of Delta-type Parallel Robot)

  • 백동희;김영대;조황
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.273-284
    • /
    • 2020
  • 본 논문은 현재 자동화 공정에서 널리 쓰이는 델타 로봇을 저가형 DC 모터로 제작 및 제어하는 방법을 제안한다. 델타 로봇의 기구학 및 동역학을 해석하여 시뮬레이션을 한 후, 이를 기반으로 저가형 DC 모터를 선정하였다. 실험을 통하여 모터의 특성 값들을 획득하고 제어 이론을 적용하여 전류-위치 Cascade 제어 시스템을 설계하였다. 설계한 시스템의 성능을 검증하기 위해서 델타 로봇의 말단효과장치의 목표 경로를 설정하여 실험을 진행하였다. 실험을 통하여 저가형 모터를 사용함으로서 발생하는 문제점들을 보상 알고리즘을 설계하여 극복하고 End-effector의 위치 제어 성능을 입증하였다.