• Title/Summary/Keyword: Delivery Volume

Search Result 294, Processing Time 0.027 seconds

The Usefulness of Pressure-regulated Volume Control(PRVC) Mode in Mechanically Ventilated Patients with Unstable Respiratory Mechanics (기계 호흡 중 불안정한 호흡역학을 보인 환자에서 압력조절용적조정양식(Pressure-regulated Volume Control Mode)의 효용)

  • Sohn, Jang-Won;Koh, Youn-Suck;Lim, Chae-Man;Shim, Tae-Sun;Lee, Jong-Deog;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1318-1325
    • /
    • 1997
  • Background : Since the late 1960s, mechanical ventilation has been accomplished primarily using volume controlled ventilation(VCV). While VCV allows a set tidal volume to be guaranteed, VCV could bring about excessive airway pressures that may be lead to barotrauma in the patients with acute lung injury. With the increment of knowledge related to ventilator-induced lung injury, pressure controlled ventilation(PCV) has been frequently applied to these patients. But, PCV has a disadvantage of variable tidal volume delivery as pulmonary impedance changes. Since the concept of combining the positive attributes of VCV and PCV(dual control ventilation, DCV) was described firstly in 1992, a few DCV modes were introduced. Pressure-regulated volume control(PRVC) mode, a kind of DCV, is pressure-limited, time-cycled ventilation that uses tidal volume as a feedback control for continuously adjusting the pressure limit However, no clinical studies were published on the efficacy of PRVC until now. 'This investigation studied the efficacy of PRVC in the patients with unstable respiratory mechanics. Methods : The subjects were 8 mechanically ventilated patients(M : F=6 : 2, $56{\pm}26$ years) who showed unstable respiratory mechanics, which was defined by the coefficients of variation of peak inspiratory pressure for 15 minutes greater than 10% under VCV, or the coefficients of variation of tidal volume greater than 10% under PCV. The study was consisited of 3 modes application with VCV, PCV and PRVC for 15 minutes by random order. To obtain same tidal volume, inspiratory pressure setting was adjusted in PCV. Respiratory parameters were measured by pulmonary monitor(CP-100 pulmonary monitor, Bicore, Irvine, CA, USA). Results : 1) Mean tidal volumes($V_T$) in each mode were not different(VCV, $431{\pm}102ml$ ; PCV, $417{\pm}99ml$ ; PRVC, $414{\pm}97ml$) 2) The coefficient of variation(CV) of $V_T$ were $5.2{\pm}3.9%$ in VCV, $15.2{\pm}7.5%$ in PCV and $19.3{\pm}10.0%$ in PRVC. The CV of $V_T$ in PCV and PRVC were significantly greater than that in VCV(p<0.01). 3) Mean peak inspiratory pressure(PIP) in VCV($31.0{\pm}6.9cm$ $H_2O$) was higher than PIP in PCV($26.0{\pm}6.5cm$ $H_2O$) or PRVC($27.0{\pm}6.4cm$ $H_2O$)(p<0.05). 4) The CV of PIP were $13.9{\pm}3.7%$ in VCV, $4.9{\pm}2.6%$ in PVC and $12.2{\pm}7.0%$ in PRVC. The CV of PIP in VCV and PRVC were greater than that in PCV(p<0.01). Conclusions : Because of wide fluctuations of VT and PIP, PRVC mode did not seem to have advantages compared to VCV or PCV in the patients with unstable respiratory mechanics.

  • PDF

Analysis on Longitudinal Dose according to Change of Field Width (선속 폭(Field Width) 변화에 따른 종축선량 분석)

  • Jung, Won-Seok;Back, Jong-Geal;Shin, Ryung-Mi;Oh, Byung-Cheon;Jo, Jun-Young;Kim, Gi-Chul;Choi, Tae-Gu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2011
  • Purpose: To analyze the accuracy of tumor volume dose following field width change, to check the difference of dose change by using self-made moving car, and to evaluate practical delivery tumor dose when tomotherapy in the treatment of organ influenced by breathing. Materials and Methods: By using self-made moving car, the difference of longitudinal movement (0.0 cm, 1.0 cm, 1.5 cm, 2.0 cm) was applied and compared calculated dose with measured dose according to change of field width (1.05 cm, 2.50 cm, 5.02 cm) and apprehended margin of error. Then done comparative analysis in degree of photosensitivity of DQA film measured by using Gafchromic EBT film. Dose profile and Gamma histogram were used to measure degree of photosensitivity of DQA film. Results: When field width were 1.05 cm, 2.50 cm, 5.02 cm, margin of error of dose delivery coefficient was -2.00%, -0.39%, -2.55%. In dose profile of Gafchromic EBT film's analysis, the movement of moving car had greater motion toward longitudinal direction and as field width was narrower, big error increased considerably at high dose part compared to calculated dose. The more field width was narrowed, gamma index had a large considerable influence of moving at gamma histogram. Conclusion: We could check the difference of longitudinal dose of moving organ. In order to small field width and minimize organ moving due to breathing, it is thought to be needed to develop breathing control unit and fixation tool.

  • PDF

Comparison of Analgesic Efficacy and Shortening of Labor Duration between $L_{1-2}$ and $L_{3-4}$ Epidural Blocks in Nulliparous Normal Vaginal Delivery (초산모에서 경막외 $L_{1-2}$$L_{3-4}$ 차단 시 제통효과와 분만기간의 비교)

  • Kang, Kyu-Sik;Lee, Sang-Yoon;Kim, Jung-Soon;Nam, Kae-Hyun;Park, Wook
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.61-67
    • /
    • 2001
  • Background: Usually, lumbar epidural block is performed on the $L_{3-4}$ interspace. This study was designed to evaluate the analgesic efficacy and shortening of labor duration comparing the $L_{1-2}$ and $L_{3-4}$ interspace epidural blocks in nulliparous normal vaginal deliveries and then investigates side effects following the blocks. Methods: Eighty healthy nulliparous women were divided into two groups, $L_{1-2}$ (n = 40) and $L_{3-4}$ (n = 40). Epidural blocks, lumbar epidural block were performed at the $L_{1-2}$ and $L_{3-4}$ interspace with a catheter advancing 3 cm cephalad. The initial dose of 12 ml (0.167% bupivacaine, fentanyl $50{\mu}g$ and clonidine $75{\mu}g$) was injected epidurally at 4 cm dilatation of cervix and severe pain of labor. If a visual analogue scale (VAS) score was more than 4 points, an additional dose was administered epidurally using the same volume as the above mentioned, but with the exception that the bupivacaine was diluted to 0.1 percentage. The maternal blood pressure, pulse rate, respiration rate and fetal heart rate were measured at 10 min intervals for the first 30 min, at 15 min interval for the next 30 min and at 30 min interval for the last one hour following the blocks. The duration of the first (active) and second stages of labor was counted and the neonatal Apgar score was recorded at one and five min after delivery. The degree of motor block, pruritus, nausea and vomiting were also noted. Results: The patients in group $L_{1-2}$ had lower pain scores than group $L_{3-4}$ at 5, 20, 30, 60 mins. The duration of 1st and 2nd labor stage in the $L_{3-4}$ epidural block were $272{\pm}33.5$ min, $49.2{\pm}27.4$ min respectively but those in the $L_{1-2}$ epidural block were $253.5{\pm}32.5$ min, $37.3{\pm}22.3$ min, respectively. Conclusions: We concluded the analgesic efficacy and shortening of labor duration in $L_{1-2}$ epidural block was better than those in $L_{3-4}$ epidural block. Maternal hemodynamic change, motor block. pruritus, nausea, vomiting and Apgar score showed no significant differences between the two groups.

  • PDF

A Study on a Comparative Analysis of 2D and 3D Planning Using CT Simulator for Transbronchial Brachytherapy (전산화단층모의치료기를 이용한 경기관지 근접치료환자의 치료계획에 관한 고찰)

  • Seo, Dong Rin;Kim, Dae Sup;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Purpose: Transbronchial brachytherapy used in the two-dimensional treatment planning difficult to identify the location of the tumor in the affected area to determine the process analysis. In this study, we have done a comparative analysis for the patient's treatment planning using a CT simulator. Materials and Methods: The analysis was performed by the patients who visited the hospital to June 2012. The patient carried out CT-image by CT simulator, and we were plan to compare with a two-dimensional and threedimensional treatment planning using a Oncentra Brachy planning system (Nucletron, Netherland). Results: The location of the catheter was confirmed the each time on a treatment planning for fractionated transbronchial brachytherapy. GTV volumes were $3.5cm^3$ and $3.3cm^3$. Also easy to determine the dose distribution of the tumor, the errors of a dose delivery were confirmed dose distribution of the prescibed dose for GTV. In the first treatment was 92% and the second was 88%. Conclusion: In order to compensate for the problem through a two-dimensional treatment planning, it is necessary to be tested process for the accurate identification and analysis of the treatment volume and dose distribution. Quantitatively determine the dose delivery error process that is reflected to the treatment planning is required.

  • PDF

A Strategy To Reduce Network Traffic Using Two-layered Cache Servers for Continuous Media Data on the Wide Area Network (이중 캐쉬 서버를 사용한 실시간 데이터의 좡대역 네트워크 대역폭 감소 정책)

  • Park, Yong-Woon;Beak, Kun-Hyo;Chung, Ki-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3262-3271
    • /
    • 2000
  • Continuous media objects, due to large volume and real-time consiraints in their delivery,are likely to consume much network andwidth Generally, proxy servers are used to hold the fiequently requested objects so as to reduce the network traffic to the central server but most of them are designed for text and image dae that they do not go well with continuous media data. So, in this paper, we propose a two-layered network cache management policy for continuous media object delivery on the wide area networks. With the proposed cache management scheme,in cach LAN, there exists one LAN cache and each LAN is further devided into a group of sub-LANs, each of which also has its own sub-LAN eache. Further, each object is also partitioned into two parts the front-end and rear-end partition. they can be loaded in the same cache or separately in different network caches according to their access frequencics. By doing so, cache replacement overhead could be educed as compared to the case of the full size daa allocation and replacement , this eventually reduces the backbone network traffic to the origin server.

  • PDF

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

Evaluation of Dose and Position Compensation of Parotid Gland Using CT On-rail System in Head-and-Neck Cancer (두경부 암환자 치료 시 CT On-rail System을 이용한 이하선의 위치 보정 및 선량 평가)

  • Jang, Hyeong-Jun;Im, Chung-Geun;Chun, Geum-Sung;Jeong, Il-Seon;Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • Purpose: The checking method of target and normal structure are used by MVCBCT, KVCBCT, CT On-rail System, Ultrasound in H&N cancer patient. In case of MVCT, the utilization of bone structure is valuable to check around tissue. But the utilization of soft tissue is not enough. The point of this paper is dose variation in movable parotid and changeable volume of H&N cancer patient of CT On-rail System. Materials and Methods: The object of H&N cancer patient is 5 in this hospital. The selected patient are scanned ARTISTE CT Vision (CT On-ral System) a triweekly. After CT scanning, tranfered coordinates are obtained by movable of parotid gland comparison with planning image. Checking for the changeable volume of parotid gland. A Obtained CT image are tranfered to the RTP System. So dose variation are checked by following changed volume. Results: The changes of target coordinate by the parotid gland movement are X: -0.4~0.4 cm, Y: -0.4~0.3 cm, Z: -0.3~0.3 cm. the volume of GTV is decreased to about 7.11%/week and then both parotid gland volume are shrinked about 4.81%/week (Lt), 2.91%/week (Rt). At the same time, each parotid gland are diminished in radiation dose as 3.66%/week (Lt), 2.01%/week. Conclusion: Images from CT on the rail System which are able to aquire the better quality images of soft tissue in Target area than MVCBCT. After replanning and dose redistribution by required images, It could gain not only the correction of the patient set-tup errors but exact dose distribution. Accordingly, the delivery of compensated dose, It makes that we could do Adaptive Targeting Radiotherapy and need Real Time Adaptive Targeting Radiotherapy by reduce beam delivary time.

  • PDF

Contrast Media in Abdominal Computed Tomography: Optimization of Delivery Methods

  • Joon Koo Han;Byung Ihn Choi;Ah Young Kim;Soo Jung Kim
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2001
  • Objective: To provide a systematic overview of the effects of various parameters on contrast enhancement within the same population, an animal experiment as well as a computer-aided simulation study was performed. Materials and Methods: In an animal experiment, single-level dynamic CT through the liver was performed at 5-second intervals just after the injection of contrast medium for 3 minutes. Combinations of three different amounts (1, 2, 3 mL/kg), concentrations (150, 200, 300 mgI/mL), and injection rates (0.5, 1, 2 mL/sec) were used. The CT number of the aorta (A), portal vein (P) and liver (L) was measured in each image, and time-attenuation curves for A, P and L were thus obtained. The degree of maximum enhancement (Imax) and time to reach peak enhancement (Tmax) of A, P and L were determined, and times to equilibrium (Teq) were analyzed. In the computed-aided simulation model, a program based on the amount, flow, and diffusion coefficient of body fluid in various compartments of the human body was designed. The input variables were the concentrations, volumes and injection rates of the contrast media used. The program generated the time-attenuation curves of A, P and L, as well as liver-to-hepatocellular carcinoma (HCC) contrast curves. On each curve, we calculated and plotted the optimal temporal window (time period above the lower threshold, which in this experiment was 10 Hounsfield units), the total area under the curve above the lower threshold, and the area within the optimal range. Results: A. Animal Experiment: At a given concentration and injection rate, an increased volume of contrast medium led to increases in Imax A, P and L. In addition, Tmax A, P, L and Teq were prolonged in parallel with increases in injection time The time-attenuation curve shifted upward and to the right. For a given volume and injection rate, an increased concentration of contrast medium increased the degree of aortic, portal and hepatic enhancement, though Tmax A, P and L remained the same. The time-attenuation curve shifted upward. For a given volume and concentration of contrast medium, changes in the injection rate had a prominent effect on aortic enhancement, and that of the portal vein and hepatic parenchyma also showed some increase, though the effect was less prominent. A increased in the rate of contrast injection led to shifting of the time enhancement curve to the left and upward. B. Computer Simulation: At a faster injection rate, there was minimal change in the degree of hepatic attenuation, though the duration of the optimal temporal window decreased. The area between 10 and 30 HU was greatest when contrast media was delivered at a rate of 2 3 mL/sec. Although the total area under the curve increased in proportion to the injection rate, most of this increase was above the upper threshould and thus the temporal window was narrow and the optimal area decreased. Conclusion: Increases in volume, concentration and injection rate all resulted in improved arterial enhancement. If cost was disregarded, increasing the injection volume was the most reliable way of obtaining good quality enhancement. The optimal way of delivering a given amount of contrast medium can be calculated using a computer-based mathematical model.

  • PDF

Search of Characteristic for Dose Distribution Presented by Multi­isocentric Stereotactic Radiosurgical Plan Using Linear Accelerator (선형 가속기를 이용한 정위적 방사선 수술시 병소내 선량분포의 특성조사)

  • 최경식;오승종;이형구;최보영;전흥재;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.225-233
    • /
    • 2003
  • The goal of a radiation treatment plan is to deliver a homogeneous dose to a target with minimal irradiation of the adjacent normal tissues. Dose uniformity is especially important for stereotactic radiosurgery using a linear accelerator. The dose uniformity and high dose delivery of a single spherical dose distribution exceed 70%. This also results with a similar stereotactic radiosurgical plan using a Gamma Knife. The dose distribution produced in a stereotactic radiosurgical plan using a Gamma Knife and Linear accelerator is spherical, and the application of the sphere packing arrangement in a real radiosurgical plan requires much time and skill. In this study, we found a characteristic of dose distribution with transformation of beam parameters that must be considered in a radiosurgical plan for effective radiosurgery. First, we assumed a cylinder type tumor model and a cube type tumor model. Secondly, the results of the tumor models were compared and analyzed with dose profiles and DVH_(Dose Volume Histogram) representative dose distribution. We found the optimal composition of beam parameters_(i.e. collimator size, number of isocenter, gap of isocenters etc.), which allowed the tumor models to be involved in the isodose curve at a high level. In conclusion, the characteristics found in this study are helpful for improving the effectiveness and speed of a radiosurgical plan for stereotactic radiosurgery.

  • PDF

Evaluation of DQA for Tomotherapy using 3D Volumetric Phantom (3차원 체적팬텀을 이용한 토모치료의 Delivery Quality Assurance 평가)

  • Lee, Sang-Uk;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.607-614
    • /
    • 2016
  • The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at $0.76{\pm}0.59%$ and $1.37{\pm}0.76%$ in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were $97.72{\pm}0.02%$ and $99.26{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were $94.21{\pm}0.02%$ and $93.02{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.