• 제목/요약/키워드: Deletions

Search Result 225, Processing Time 0.024 seconds

The complete chloroplast genome sequence of Korean Neolitsea sericea (Lauraceae)

  • PARK, Yoo-Jung;CHEON, Kyeong-Sik
    • 식물분류학회지
    • /
    • 제51권3호
    • /
    • pp.332-336
    • /
    • 2021
  • The complete chloroplast (cp) genome sequence of Neolitsea sericea was determined by Illumina sequencing. The complete cp genome was 152,446bp in length, containing a large single-copy region of 93,796 bp and a small single-copy region of 18,506bp, which were separated by a pair of 20,072bp inverted repeats. A total of 112 unique genes were annotated, including 78 protein-coding genes (PCGs), 30 transfer RNAs, and four ribosomal RNAs. Among the PCGs, 18 genes contained one or two introns. A very low level of sequence variation between two cp genomes of N. sericea was found with seven insertions or deletions and only one single nucleotide polymorphism. An analysis using the maximum likelihood method showed that N. sericea was closely related to Actinodaphne trichocarpa.

Application of CRISPR-Cas9 gene editing for congenital heart disease

  • Seok, Heeyoung;Deng, Rui;Cowan, Douglas B.;Wang, Da-Zhi
    • Clinical and Experimental Pediatrics
    • /
    • 제64권6호
    • /
    • pp.269-279
    • /
    • 2021
  • Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) is an ancient prokaryotic defense system that precisely cuts foreign genomic DNA under the control of a small number of guide RNAs. The CRISPR-Cas9 system facilitates efficient double-stranded DNA cleavage that has been recently adopted for genome editing to create or correct inherited genetic mutations causing disease. Congenital heart disease (CHD) is generally caused by genetic mutations such as base substitutions, deletions, and insertions, which result in diverse developmental defects and remains a leading cause of birth defects. Pediatric CHD patients exhibit a spectrum of cardiac abnormalities such as septal defects, valvular defects, and abnormal chamber development. CHD onset occurs during the prenatal period and often results in early lethality during childhood. Because CRISPR-Cas9-based genome editing technology has gained considerable attention for its potential to prevent and treat diseases, we will review the CRISPR-Cas9 system as a genome editing tool and focus on its therapeutic application for CHD.

Evolution of CRISPR towards accurate and efficient mammal genome engineering

  • Ryu, Seuk-Min;Hur, Junseok W;Kim, Kyoungmi
    • BMB Reports
    • /
    • 제52권8호
    • /
    • pp.475-481
    • /
    • 2019
  • The evolution of genome editing technology based on CRISPR (clustered regularly interspaced short palindromic repeats) system has led to a paradigm shift in biological research. CRISPR/Cas9-guide RNA complexes enable rapid and efficient genome editing in mammalian cells. This system induces double-stranded DNA breaks (DSBs) at target sites and most DNA breakages induce mutations as small insertions or deletions (indels) by non-homologous end joining (NHEJ) repair pathway. However, for more precise correction as knock-in or replacement of DNA base pairs, using the homology-directed repair (HDR) pathway is essential. Until now, many trials have greatly enhanced knock-in or substitution efficiency by increasing HDR efficiency, or newly developed methods such as Base Editors (BEs). However, accuracy remains unsatisfactory. In this review, we summarize studies to overcome the limitations of HDR using the CRISPR system and discuss future direction.

쿠버네티스 API server의 Transport Layer Security 패킷 실시간 복호화 및 시각화 시스템 (API Server Transport Layer Security Packets Real-Time Decryption and Visualization System in Kubernetes)

  • 김태현;김태영;최미희;진성근
    • 대한임베디드공학회논문지
    • /
    • 제16권3호
    • /
    • pp.99-105
    • /
    • 2021
  • The cloud computing evolution has brought us increasing necessity to manage virtual resources. For this reason, Kubernetes has developed to realize autonomous resource management in a large scale. It provides cloud computing infrastructure to handle cluster creations and deletions in a secure virtual computing environment. In the paper, we provide a monitoring scheme in which users can observe securely encrypted protocols while each Kubernetes component exchanges their packets. Eventually, users can utilize the proposed scheme for debugging as well as monitoring.

Multi-omics techniques for the genetic and epigenetic analysis of rare diseases

  • Yeonsong Choi;David Whee-Young Choi;Semin Lee
    • Journal of Genetic Medicine
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2023
  • Until now, rare disease studies have mainly been carried out by detecting simple variants such as single nucleotide substitutions and short insertions and deletions in protein-coding regions of disease-associated gene panels using diagnostic next-generation sequencing in association with patient phenotypes. However, several recent studies reported that the detection rate hardly exceeds 50% even when whole-exome sequencing is applied. Therefore, the necessity of introducing whole-genome sequencing is emerging to discover more diverse genomic variants and examine their association with rare diseases. When no diagnosis is provided by whole-genome sequencing, additional omics techniques such as RNA-seq also can be considered to further interrogate causal variants. This paper will introduce a description of these multi-omics techniques and their applications in rare disease studies.

Exonic copy number variations in rare genetic disorders

  • Man Jin Kim
    • Journal of Genetic Medicine
    • /
    • 제20권2호
    • /
    • pp.46-51
    • /
    • 2023
  • Exonic copy number variation (CNV), involving deletions and duplications at the gene's exon level, presents challenges in detection due to their variable impact on gene function. The study delves into the complexities of identifying large CNVs and investigates less familiar but recurrent exonic CNVs, notably enriched in East Asian populations. Examining specific cases like DRC1, STX16, LAMA2, and CFTR highlights the clinical implications and prevalence of exonic CNVs in diverse populations. The review addresses diagnostic challenges, particularly for single exon alterations, advocating for a strategic, multi-method approach. Diagnostic methods, including multiplex ligation-dependent probe amplification, droplet digital PCR, and CNV screening using next-generation sequencing data, are discussed, with whole genome sequencing emerging as a powerful tool. The study underscores the crucial role of ethnic considerations in understanding specific CNV prevalence and ongoing efforts to unravel subtle variations. The ultimate goal is to advance rare disease diagnosis and treatment through ethnically-specific therapeutic interventions.

Genome-wide in-locus epitope tagging of Arabidopsis proteins using prime editors

  • Cheljong Hong;Jun Hee Han;Gue-Ho Hwang;Sangsu Bae;Pil Joon Seo
    • BMB Reports
    • /
    • 제57권1호
    • /
    • pp.66-70
    • /
    • 2024
  • Prime editors (PEs), which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusion proteins programmed with prime editing guide RNAs (pegRNAs), can not only edit bases but also install transversions, insertions, or deletions without both donor DNA and double-strand breaks at the target DNA. As the demand for in-locus tagging is increasing, to reflect gene expression dynamics influenced by endogenous genomic contexts, we demonstrated that PEs can be used to introduce the hemagglutinin (HA) epitope tag to a target gene locus, enabling molecular and biochemical studies using in-locus tagged plants. To promote genome-wide in-locus tagging, we also implemented a publicly available database that designs pegRNAs for in-locus tagging of all the Arabidopsis genes.

감자의 단백질 분해효소 억제제 II 유전자의 특별한 염기서열의 자연적 제거로 인한 상처 유발성 발현의 소실 (Loss of Specific Sequences in a Natural Variant of Potato Proteinase Inhibitor II Gene Results in a Loss of Wound-Inducible Gene Expression)

  • ;박상규
    • Applied Biological Chemistry
    • /
    • 제39권2호
    • /
    • pp.104-111
    • /
    • 1996
  • 감자의 genomic DNA library로 부터 분리한 proteinase inhibitor II (pin2) 유전자들의 제한효소 지도를 작성 하였던바 이미 분리된 상처 유발 (wound-inducible)pin2K 유전자의 것과 상이성이 있는 pin2T를 분리하여 염기서열을 결정하였다. 두 유전자의 염기서열은 전체적으로 약 86%의 동일성을 보였으며 특히 promoter 부위의 염기서열은 pin2K 유전자의 전사개시 부위의 상대적인 위치인 -714까지 네부분의 결손(20 내지 60bp)을 제외하던 약 91%수준의동일성을 보였다. 분리한 유전자들의 promoter 부위를 표지 유전자인 CAT와 GUS 유전자에 연결 시킨후 담배에서의 발현을 추적하였던바, pin2K 유전자의 promoter에 의한 표지유전자의 발현은 상처에 의해 발현 되었으나 pin2T 유전자의 promoter에 의한 표지유전자의 발현은 상처 유무와 관계없이 낮은 수준으로 나타났다. 또한 pin2T 유전자의 Promoter 내의 결손은 핵 단백질의 promoter에의 결합에 영향을 주지 않았으며 상처 유발pin2K 유전자의 promoter 염기서열과 비교하였을때 pin2T 유전자의 promoter 부위내에 5'-AGTAAA-3'라는 특별한 염기부위가 자연적으로 제거된것을 알수 있었다. 또한 5'-AGTAAh-3'의 염기부위가 다른 상처 유발 유전자들에서는 흔히 발견되고, 다른 식물 유전자들의 Promoter에서는 쉽게 발견이 되지 않았다. 따라서 상처 유발 pin2K 유전자의 Promoter내에 상처 유발과 관련있는 특별한 염기부위가 자연적으로 결실되어 pin2T 유전자의 발현이 상처 유발성을 잃은것으로 짐작된다.

  • PDF

지방산 생합성 관련 유전자 결손 Bacillus subtilis 균주들의 저온충격 민감성 생장 (Cold shock sensitive growth of Bacillus subtilis mutants deleted for genes involved in fatty acid synthesis)

  • 김도형;이상수
    • 미생물학회지
    • /
    • 제54권1호
    • /
    • pp.9-17
    • /
    • 2018
  • 저온 환경에서의 생장에 영향을 주는 지방산 합성 관련 유전자 bkdR, sigL, yplP, des들의 역할을 알아보기 위하여 각각 유전자들이 상실된 Bacillus subtilis CU1065와 JH642 돌연변이들을 제조하였다. 이들 유전자들의 저온 민감성을 확인하기 위해 $37^{\circ}C$$15^{\circ}C$에서 세포들의 생장을 측정하였다. $37^{\circ}C$에서 야생형과 결실 돌연변이 균주는 거의 유사한 정도의 생장을 보였으나, $15^{\circ}C$에서 오직bkdR 결실 돌연변이만이 야생형에 비해 매우 느린 생장이 관찰되었으며 sigL, yplP 결실의 경우 야생형에 비해 다소 느리거나 유사한 생장을 보였다. bkdR, sigL, yplP 결실에 대한 이중, 삼중 돌연변이를 만들어 LB agar에서 $20^{\circ}C$로 키워 저온생장을 조사한 결과, bkdR 결실이 포함되지 않은 어떤 이중, 삼중 결실들에서는 저온에 민감한 생장을 보이지 않았다. 온도 민감성 특성을 보다 잘 알아보기 위하여 $37^{\circ}C$에서 $OD_{600}=0.4$까지 키워 $15^{\circ}C$로 온도를 내리는 저온충격 조건에서 생장하는 실험을 진행하였다. 이 실험에서 오직bkdR 결실 돌연변이만이 현저히 낮은 생장을 보였으며 추가적인 des 결실은 저온 민감성을 증가시킨다. bkdR은 branched-chain fatty acid을 합성하는 전구물질인 isoleucine, valine, leucine 아미노산을 생산하는 bkd operon을 활성화한다. bkdR 결실 돌연변이의 저온생장에서 이들 아미노산의 저온생장에 미치는 영향을 조사한 결과 isoleucine은 bkdR 결실에 대한 저온 민감성을 회복시켜주나 valine은 저온 민감성을 회복시켜 주지 못하는 결과를 보였다. isoleucine은 분해되어 anteiso-branched 지방산 합성의 전구물질로 만들어지는 반면에, valine은 iso-branched 지방산 합성의 전구물질로 만들어진다. 따라서 저온생장에서 branched-chain fatty acid 중 anteiso-branched 지방산이 중요한 역할을 하고 있음을 알 수 있었다.

Chromosome Imbalances and Alterations of AURKA and MYCN Genes in Children with Neuroblastoma

  • Inandiklioglu, Nihal;Yilmaz, Sema;Demirhan, Osman;Erdogan, seyda;Tanyeli, Atila
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5391-5397
    • /
    • 2012
  • Background: Neuroblastoma (NB), like most human cancers, is characterized by genomic instability, manifested at the chromosomal level as allelic gain, loss or rearrangement. Genetics methods, as well as conventional and molecular cytogenetics may provide valuable clues for the identification of target loci and successful search for major genes in neuroblastoma. We aimed to investigate AURKA and MYCN gene rearrangements and the chromosomal aberrations (CAs) to determine the prognosis of neuroblastoma. Methods: We performed cytogenetic analysis by G-banding in 25 cases [11 girls (44%) and 14 boys (66%)] and in 25 controls. Fluorescence in situ hybridization (FISH) with AURKA and MYCN gene probes was also used on interphase nuclei to screen for alterations. Results: Some 18.4% of patient cells exhibited CAs., with a significant difference between patient and control groups in the frequencies (P<0.0001). Some 72% of the cells had structural aberrations, and only 28% had numerical chnages in patients. Structural aberrations consisted of deletions, translocations, breaks and fragility in various chromosomes, 84% and 52% of the patients having deletions and translocations, respectively. Among these expressed CAs, there was a higher frequency at 1q21, 1q32, 2q21, 2q31, 2p24, 4q31, 9q11, 9q22, 13q14, 14q11.2, 14q24, and 15q22 in patients. 32% of the patients had chromosome breaks, most frequently in chromosomes 1, 2, 3, 4, 5, 8, 9, 11, 12, 19 and X. The number of cells with breaks and the genomic damage frequencies were higher in patients (p<0.001). Aneuploidies in chromosomes X, 22, 3, 17 and 18 were most frequently observed. Numerical chromosome abnormalities were distinctive in 10.7% of sex chromosomes. Fragile sites were observed in 16% of our patients. Conclusion: Our data confirmed that there is a close correlation between amplification of the two genes, amplification of MYCN possibly contributing significantly to the oncogenic properties of AURKA. The high frequencies of chromosomal aberrations and amplifications of AURKA and MYCN genes indicate prognostic value in children with neuroblastomas and may point to contributing factors in their development.