• 제목/요약/키워드: Deletion mutants

검색결과 175건 처리시간 0.026초

Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae

  • Lee, Chaeyeong;Mannaa, Mohamed;Kim, Namgyu;Kim, Juyun;Choi, Yeounju;Kim, Soo Hyun;Jung, Boknam;Lee, Hyun-Hee;Lee, Jungkwan;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제35권5호
    • /
    • pp.445-458
    • /
    • 2019
  • The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.

The necrotroph Botrytis cinerea promotes disease development in Panax ginseng by manipulating plant defense signals and antifungal metabolites degradation

  • Chen, Huchen;Zhang, Shuhan;He, Shengnan;A, Runa;Wang, Mingyang;Liu, Shouan
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.790-800
    • /
    • 2022
  • Background: Panax ginseng Meyer is one of the most valuable medicinal plants which is enriched in anti-microbe secondary metabolites and widely used in traditional medicine. Botrytis cinerea is a necrotrophic fungus that causes gray mold disease in a broad range of hosts. B. cinerea could overcome the ginseng defense and cause serious leaf and root diseases with unknown mechanism. Methods: We conducted simultaneous transcriptomic and metabolomic analysis of the host to investigate the defense response of ginseng affected by B. cinerea. The gene deletion and replacement were then performed to study the pathogenic gene in B. cinerea during ginseng - fungi interaction. Results: Upon B. cinerea infection, ginseng defense responses were switched from the activation to repression, thus the expression of many defense genes decreased and the biosynthesis of antifungal metabolites were reduced. Particularly, ginseng metabolites like kaempferol, quercetin and luteolin which could inhibit fungi growth were decreased after B. cinerea infection. B. cinerea quercetin dioxygenase (Qdo) involved in catalyzing flavonoids degradation and ∆BcQdo mutants showed increased substrates accumulation and reduced disease development. Conclusion: This work indicates the flavonoids play a role in ginseng defense and BcQdo involves in B. cinerea virulence towards the P. ginseng. B. cinerea promotes disease development in ginseng by suppressing of defense related genes expression and reduction of antifungal metabolites biosynthesis.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon Hae-Jeong;Baek Dong-Won;Lee Ji-Young;Nam Jae-Sung;Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • 제5권3호
    • /
    • pp.143-148
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MSP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to playa novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

Comparative Genomic Analysis Reveals That the 20K and 38K Prophages in Listeria monocytogenes Serovar 4a Strains Lm850658 and M7 Contribute to Genetic Diversity but Not to Virulence

  • Fang, Chun;Cao, Tong;Shan, Ying;Xia, Ye;Xin, Yongping;Cheng, Changyong;Song, Houhui;Bowman, John;Li, Xiaoliang;Zhou, Xiangyang;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.197-206
    • /
    • 2016
  • Listeria monocytogenes is a foodborne pathogen of considerable genetic diversity with varying pathogenicity. Initially, we found that the strain M7 was far less pathogenic than the strain Lm850658 though both are serovar 4a strains belonging to the lineage III. Comparative genomic approaches were then attempted to decipher the genetic basis that might govern the strain-dependent pathotypes. There are 2,761 coding sequences of 100% nucleotide identity between the two strains, accounting for 95.7% of the total genes in Lm850658 and 92.7% in M7. Lm850658 contains 33 specific genes, including a novel 20K prophage whereas strain M7 has 130 specific genes, including two large prophages (38K and 44K). To examine the roles of these specific prophages in pathogenicity, the 20K and 38K prophages were deleted from their respective strains. There were virtually no differences of pathogenicity between the deletion mutants and their parent strains, although some putative virulent factors like VirB4 are present in the 20K region or holin-lysin in the 38K region. In silico PCR analysis of 29 listeria genomes show that only strain SLCC2540 has the same 18 bp integration hotspot as Lm850658, whereas the sequence identity of their 20K prophages is very low (21.3%). The 38K and 44K prophages are located in two other different hotspots and are conserved in low virulent strains M7, HCC23, and L99. In conclusion, the 20K and 38K prophages of L. monocytogenes serovar 4a strains Lm850658 and M7 are not related to virulence but contribute to genetic diversity.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2003년도 식물바이오벤처 페스티발
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF

진핵 미생물에서의 COP9 signalosome의 역할 (The COP9 Signalosome Network in Eukaryotic Microorganisms)

  • 천영미;이수진
    • 한국균학회지
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Cop9 signalosome(CSN)은 최초 식물 발달 과정에서의 빛에 의한 전사 조절 과정에서의 억제 유전자로 처음 분리된 이후 이들이 다양한 진핵 생물 에서 매우 잘 보존되어 있음이 알려지게 되었다. 이들은 대부분 8개의 subunit으로 구성되며 26S proteasome lid와 eIF3와 구조적으로는 물론 기능적으로도 유사성을 보인다고 알려져 있다. 이들은 특히 Cullin-Ring ubiquitin ligases(CRL)의 구성 요소인 Cullin의 deneddylation을 매개하여 ubiquitin ligase의 활성을 조절한다고 알려져 있으며, 또한 세포 주기 및 checkpoint 조절에 관여한다고 보고되었다. 분열효모의 경우 CSN1 및 CSN2 결손 세포에서 S-phase로서의 진행이 지연됨이 관찰되었고 감마선 혹은 UV에 좀더 민감해지는 현상이 관찰되어 CSN이 checkpoint 조절에 관여한다는 것을 보여주었다. 곰팡이의 CSN 경우 구조적으로 더욱 상위 개체들의 그것과 더욱 유사한데, CSN이 생체 시계 리듬, 빛과 연관한 호르몬 생산, 곰팡이의 발달 과정 및 생식 주기를 조절함이 보고되었다. 또한 Aspergillus nidulans의 경우 상위개체에서 보여준 DNA 합성 및 손상, 세포 주기 조절에서의 기능이 알려지면서 CSN은 곰팡이 생활사에 필수적인 여러 과정들을 조절하는 중요한 인자임을 알 수 있다. 이로써 식물이나 포유동물 등에서 보고되었던 CSN의 주요 기능을 미생물에서도 대부분 공유하고 있음을 알 수 있고 이들이 CRL을 통한 주요 세포 활성 조절 연구에 좋은 툴로서 활용할 수 있음을 시사하고 있다.

Regulation of Vacuolar $H^+-ATPase$ c Gene Expression by Oxidative Stress

  • Kwak, Whan-Jong;Kim, Seong-Mook;Kim, Min-Sung;Kang, Jung-Hoon;Kim, Dong-Jin;Kim, Ho-Shik;Kown, Oh-Joo;Kim, In-Kyung;Jeong, Seong-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.275-282
    • /
    • 2005
  • By using differential display, we identified one of the genes encoding the multi-subunit complex protein V-ATPase, c subunit gene (ATP6L), and showed alterations of the gene expression by oxidative stresses. Expression of the ATP6L gene in Neuro-2A cells was increased by the treatment with $H_2O_2$ and incubation in hypoxic chamber, implying that the expression of the ATP6L gene is regulated by oxidative stresses. To examine mechanisms involved in the regulation of the gene expression by oxidative stresses, the transcriptional activity of the rat ATP6L promoter was studied. Transcription initiation site was determined by primer extension analysis and DNA sequencing, and promoter of the rat ATP6L and its deletion clones were constructed in reporter assay vector. Significant changes of the promoter activities in Neuro-2A cells were observed in two regions within the proximal 1 kbp promoter, and one containing a suppressor was in -195 to -220, which contains GC box that is activated by binding of Sp1 protein. The suppression of promoter activity was lost in mutants of the GC box. We confirmed by electrophoretic mobility shift and supershift assays that Sp1 protein specifically binds to the GC box. The promoter activity was not changed by the $H_2O_2$ treatment and incubation in hypoxic chamber, however, $H_2O_2$ increased the stability of ATP6L mRNA. These data suggest that the expression of the ATP6L gene by oxidative stresses is regulated at posttranscriptional level, whereas the GC box is important in basal activities of the promoter.

해양의 Pseudomonas sp. 로부터 분리한 alginate lyase 유전자의 promoter에 의한 대장균 내에서의 \beta-agarase 유전자의 발현과 catabolite repression의 변화 (Expression of \beta-agarase Gene and Carabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp.)

  • 공인수;박제현;한정현;최윤혁;이종희;진철호;이정기
    • 한국미생물·생명공학회지
    • /
    • 제29권2호
    • /
    • pp.72-77
    • /
    • 2001
  • Strong promoter로 밝혀진 alginate lyase 유전자의 promoter 부위에 대한 특성을 검토하기 위해 alginate lyase 유전자의 46개 N-terminal amino acid가 포함된 promoter 부분과, 같은 균으로부터 분리한 $\beta$-agarase의 유전자를 연결시켜 agarase의 activity를 평판배지상에서 보다 쉽게 확인하는 방법으로 promoter의 활성을 측정한 결과 alginate lyase 유전자 promoter에 의해서 $\beta$-agarase 유전자의 대량발현이 유도되고 있었으며 glucose의 존재하에서 $\beta$-agarase 유전자 발현이 일어나지 않는 catabolite repression 양상을 나타내고 있다. PCR로써 alginate lyase의 46개 N-terminal amino acid 부분이 순차적으로 제거된 plasmid를 제조하여 대량발현을 조사한 결과 46개의 아미노산이 제거된 후에도 $\beta$-agarase의 활성에는 변화가 없어 46개의 N-말단이 정상적인 상태에서 발현에는 영향을 미치고 있지 않음을 확인할 수 있었다. 또한 alginate lyase 유전자의 promoter region에 존재하는 가능한 2개의 promoter consensus sequence PI, PII를 subcloning한 결과 promoter PII만이 존재할 때도 대량발현이 유도되고 있음을 확인할 수 있었으며 동시에 glucose가 존재할 때 catabolite repression이 역시 나타나고 있어 이 부분이 발현 및 glucose에 의한 regulation에 매우 중요하게 작용하는 부분이라는 것을 확인할 수 있었다.

  • PDF

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.

한탄바이러스 Nucleocapsid Protein 발현에 있어 S Genome 내 Noncoding Region의 역할 (The Role of Noncoding Region in Hantaan Viral S Genome for Expression of Nucleocapsid Protein)

  • 유정희;이연승;이호동;박찬;박근용;이평우
    • 대한바이러스학회지
    • /
    • 제30권1호
    • /
    • pp.39-49
    • /
    • 2000
  • The genome of Hantaan virus, the prototype of the hantavirus genus, is composed of three segmented, single stranded negative sense RNA genome. The 5' and 3' termini of the Hantaan virus RNA genome contain noncoding regions (NCRs) that are highly conserved and complementary to form panhandle structures. There are some reports that these NCRs seems to control gene expression and viral replication in influenza virus and vesicular stomatitis virus. In this study, we examined whether NCRs in Hantaan virus playa role in expression of the viral nucleocapsid protein (Np) and foreign (luciferase) gene. The 5' and/or 3' NCR-deleted mutants were constructed and analysed. The Np expression of 5' NCR-deleted clone was similar to that of the clone containing full S genome. In the case of 3' NCR-deleted clone, it showed 40% reduction. To investigate the role of NCR in foreign gene expression, the clones which are replaced ORF of Hantaan viral Np gene with that of luciferase gene were constructed. The results were similar to those of the experiments using Np gene. These results suggest that 3' NCR is more important than 5' NCR in protein expression. To find out a critical region of 3' NCR in protein expression, several clones with a deleted part of 3' NCR were constructed and analyzed. The deletion of the conserved region in 3' NCR showed $20{\sim}30%$ decrease in Np expression. However there were no change in luciferase activities between clones with or without non-conserved region of 3' NCR. These results suggest that the 3' NCR of Hantaan virus S genome, especially conserved region in 3' NCR, plays an important role in the expression of Hantaan viral Np and foreign genes.

  • PDF