• Title/Summary/Keyword: Delayed potential

Search Result 291, Processing Time 0.024 seconds

Evaluation of the East Asian Summer Monsoon Season Simulated in CMIP5 Models and the Future Change (CMIP5 모델에 나타난 동아시아 여름몬순의 모의 성능평가와 미래변화)

  • Kwon, Sang-Hoon;Boo, Kyung-On;Shim, Sungbo;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.133-150
    • /
    • 2017
  • This study evaluates CMIP5 model performance on rainy season evolution in the East Asian summer monsoon. Historical (1986~2005) simulation is analyzed using ensemble mean of CMIP5 19 models. Simulated rainfall amount is underestimated than the observed and onset and termination of rainy season are earlier in the simulation. Compared with evolution timing, duration of the rainy season is uncertain with large model spread. This area-averaged analysis results mix relative differences among the models. All model show similarity in the underestimated rainfall, but there are quite large difference in dynamic and thermodynamic processes. The model difference is shown in horizontal distribution analysis. BEST and WORST group is selected based on skill score. BEST shows better performance in northward movement of the rain band, summer monsoon domain. Especially, meridional gradient of equivalent potential temperature and low-level circulation for evolving frontal system is quite well captured in BEST. According to RCP8.5, CMIP5 projects earlier onset, delayed termination and longer duration of the rainy season with increasing rainfall amount at the end of 21st century. BEST and WORST shows similar projection for the rainy season evolution timing, meanwhile there are large discrepancy in thermodynamic structure. BEST and WORST in future projection are different in moisture flux, vertical structure of equivalent potential temperature and the subsequent unstable changes in the conditional instability.

Evidence to Support the Therapeutic Potential of Bacteriophage Kpn5 in Burn Wound Infection Caused by Klebsiella pneumoniae in BALB/c Mice

  • Kumar, Seema;Harja, Kusum;Chhibber, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.935-941
    • /
    • 2010
  • The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. Bacteriophages have been suggested as an alternative therapeutic agent for such bacterial infections. In the present study, we examined the therapeutic potential of phage Kpn5 in the treatment of Klebsiella pneumoniae B5055-induced burn wound infection in a mouse model. An experimental model of contact burn wound infection was established in mice employing K. pneumoniae B5055 to assess the efficacy of phage Kpn5 in vivo. Survival and stability of phage Kpn5 were evaluated in mice and the maximum phage count in various organs was obtained at 6 h and persisted until 36 h. The Kpn5 phage was found to be effective in the treatment of Klebsiella-induced burn wound infection in mice when phage was administered immediately after bacterial challange. Even when treatment was delayed up to 18 h post infection, when all animals were moribund, approximately 26.66% of the mice could be rescued by a single injection of this phage preparation. The ability of this phage to protect bacteremic mice was demonstrated to be due to the functional capabilities of the phage and not due to a nonspecific immune effect. The levels of pro-inflammatory cytokines (IL-$1{\beta}$ and TNF-${\alpha}$) and anti-inflammatory cytokines (IL-10) were significantly lower in sera and lungs of phage-treated mice than phage untreated control mice. The results of the present study bring out the potential of bacteriophage therapy as an alternate preventive approach to treat K. pneumoniae B5055-induced burn wound infections. This approach not only helps in the clearance of bacteria from the host but also protects against the ensuing inflammatory damage due to the exaggerated response seen in any infectious process.

Analysis of Binodal Structures of Final State Distributions in Vibrational Predissociations of Triatomic van der Waals Molecules

  • 이천우
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1193-1203
    • /
    • 1995
  • In this work, we focused on the setup of the tools for the analysis of the final rotational state distribution of photofragments in vibrational predissociations of triatomic van der Waals molecules A-B2. We found that reflection principle used for the direct photodissociation processes can also be applied to find out the final rotational state distributions for indirect photodissociation processes. The quantity which represents the strength of rovibrational coupling between the quasi-bound state and the final state is reflected into the mirror of the classical angular momentum function, instead of the initial state before light absorption used in the reflection principle of direct processes. The sign change in the first derivative of the interaction potential with respect to the bond distance of B2 is found to be the source of the binodal structures in the final rotational distributions of photofragments in the model system studied in this work. In MQDT analysis, short range eigenchannel basis functions were found to be localized in angle, in the previous work [Lee, C.W. Bull. Korean Chem. Soc. 1995, 16, 957.] and may be called angle functions. Angle functions enjoy simple geometrical structures which have simple functional relations with the final state distributions of photofragments. Two processes take place along the angle functions which resemble the quasi-bound state and dominate over other processes. Two such angle functions are found to be not only localized angularly but also localized either one of ends of B2 in motions along the bond of B2. These dominating photodissociation processes, however, cancel each other. This cancellation causes photodissociation to depend sensitively on the interaction potential at other angles than the dominant one. Part of potential surface where much larger torque exists can now play an important role in photodissociation. MQDT also enables us to see which processes play important roles after cancellation. This is done by examining the amounts of time delayed by asymptotic eigenchannels.

Chemical Modification of the Human Ether-a-go-go-related gene (HERG) $K^+$ Current by the Amino-Group Reagent Trinitrobenzene Sulfonic Acid

  • Jo Su-Hyun;Choi Se-Young;Yun Ji-Hyun;Koh Young-Sang;Ho Won-Kyung;Lee Chin-O.
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.310-317
    • /
    • 2006
  • We investigated the effects of trinitrobenzene sulfonic acid (TNBS), an amino-group reagent, on the human ether-a-go-go-related gene (HERG) $K^+$ channels expressed in Xenopus oocytes. TNBS neutralizes the positively charged amino-groups of peptide N-terminal and lysine residues. External application of TNBS at 10 mM for 5 min irreversibly shifted the curves for currents at the end of the pulse and tail currents of HERG to a more negative potential and decreased the maximal amplitude of the $I_{tail}$ curve $(I_{tail,max})$. TNBS had little effect on either the activated current-voltage relationship or the reversal potential of HERG current, indicating that TNBS did not change ion selectivity properties. TNBS shifted the time constant curves of both activation and deactivation of the HERG current to a more hyperpolarized potential; TNBS's effect was greater on channel opening than channel closing. External $H^+$ is known to inhibit HERG current by shifting $V_{1/2}$ to the right and decreasing $I_{tail,max}$. TNBS enhanced the blockade of external $H^+$ by exaggerating the effect of $H^+$ on $I_{tail,max}$, not on $V_{1/2}$. Our data provide evidence for the presence of essential amino-groups that are associated with the normal functioning of the HERG channel and evidence that these groups modify the blocking effect of external $H^+$ on the current.

External pH Effects on Delayed Rectifier $K^+$ Currents of Small Dorsal Root Ganglion Neuron of Rat

  • Kim, Young-Ho;Hahn, Jung-Hyun;Lim, In-Ja;Chung, Sung-Kwon;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • Under certain pathophysiological conditions, such as inflammation and ischemia, the concentration of H^+$ ion in the tissue surrounding neurons is changed. Variations in H^+$ concentration are known to alter the conduction and/of the gating properties of several types of ion channels. Several types of K^+$ channels are modulated by pH. In this study, the whole cell configuration of the patch clamp technique has been applied to the recording of the responses of change of external pH on the delayed rectifier K^+$ current of cultured DRG neurons of rat. Outward K^+$ currents were examined in DRG cells, and the Charybdotoxin and Mn^{2+}$ could eliminate Ca^{2+}-dependent$ K^+$ currents from outward K^+$ currents. This outward K^+$ current was activated around -60 mV by step depolarizing pulses from holding potential -70 mV. Outward K^+$ currents were decreased by low external pH. Activation and steady-state inactivation curve were shifted to the right by acidification, while there was small change by alkalization. These results suggest that H^+$ could be alter the sensory modality by changing and modifying voltage-dependent K^+$ currents, which participated in repolarization.

  • PDF

Fifth Metatarsal Stress Fracture (운동선수의 제5 중족골 피로골절)

  • Lee, Kyung-Tai;Park, Young-Uk;JeGal, Hyuk;Kim, Jun-Beom
    • Journal of Korean Foot and Ankle Society
    • /
    • v.16 no.2
    • /
    • pp.87-93
    • /
    • 2012
  • Fractures located at the metaphyseal/diaphyseal junction at the base of the fifth metatarsal were first described by Sir Robert Jones in 1902. However, ever since, there has been disagreement and debate regarding the diagnosis, classification, pathomechanics, the incidences, and potential causes of delayed unions and nonunions, and the optimal method of treatment. It appears to be widely agreed that proximal fractures of the metaphyseal/diaphyseal region of the fifth metatarsal are prone to delayed union or even nonunion. Several classifications of proximal fifth metatarsal stress fractures have been devised. Torg et al. classified fractures involving the proximal part of the diaphysis of the fifth metatarsal into three types. The Torg classification is a good grading system that can be used to determine the type of surgery needed as well as for the prediction of prognosis. The ''plantar gap'' might add to the decision-making process for surgery and improve the prediction of patient prognosis. In addition, the new classification using 'plantar gap' might be used for classification of fifth metatarsal stress fracture. Fifth metatarsal stress fractures can be treated conservatively or surgically, and excellent results have been reported for surgery with rapid recovery in athletes. Intramedullary screw fixation has become a popular form of fixation for fifth metatarsal stress fractures. Bone grafting presents the problems of a longer recovery time and additional skin incision for harvesting. The modified tension band wiring is an useful and simple option for surgical treatment of challenging fifth metatarsal stress fractures.

Characterization of Ionic Currents in Human Neural Stem Cells

  • Lim, Chae-Gil;Kim, Sung-Soo;SuhKim, Hae-Young;Lee, Young-Don;Ahn, Seung-Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The profile of membrane currents was investigated in differentiated neuronal cells derived from human neural stem cells (hNSCs) that were obtained from aborted fetal cortex. Whole-cell voltage clamp recording revealed at least 4 different currents: a tetrodotoxin (TTX)-sensitive $Na^+$ current, a hyperpolarization-activated inward current, and A-type and delayed rectifier-type $K^+$ outward currents. Both types of $K^+$ outward currents were blocked by either 5 mM tetraethylammonium (TEA) or 5 mM 4-aminopyridine (4-AP). The hyperpolarization-activated current resembled the classical $K^+$ inward current in that it exhibited a voltage-dependent block in the presence of external $Ba^{2+}$ (30 ${\mu}$M) or $Cs^+$ (3${\mu}$M). However, the reversal potentials did not match well with the predicted $K^+$ equilibrium potentials, suggesting that it was not a classical $K^+$ inward rectifier current. The other $Na^+$ inward current resembled the classical $Na^+$ current observed in pharmacological studies. The expression of these channels may contribute to generation and repolarization of action potential and might be regarded as functional markers for hNSCs-derived neurons.

Some Factors Affecting Germination and Growth of Echinochloa colona (Echinochloa colona의 발아(發芽) 및 생장(生長)에 미치는 제요인(諸要因))

  • Chun, J.C.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.5 no.2
    • /
    • pp.103-108
    • /
    • 1985
  • A series of experiments were conducted to determine the effect of pH, salinity, seeding depth, and moisture stress on the germination and growth of Echinochloa colons (L.) Link. Germination significantly decreased at pH 10, but shoot lengths were not affected by the pH tested. Germination was not affected by salt concentrations of up to 0.1%, but was significantly reduced at 0.5%. A 1.0% salt concentration did not significantly reduce shoot length. Increase in seeding depth significantly reduced emergence. Irrespective of seeding depth, the coleoptilar node was always just below the soil surface. Delayed and decreased germination was obtained at -4.6 bars of simulated water potential, while no germination occurred at -9.8 bars. Soil moisture stress significantly reduced plant height, delayed panicle initiation, and reduced seed production.

  • PDF

An Analytical Study of Mammalian Bite Wounds Requiring Inpatient Management

  • Lee, Young-Geun;Jeong, Seong-Ho;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.705-710
    • /
    • 2013
  • Background Mammalian bite injuries create a public health problem because of their frequency, potential severity, and increasing number. Some researchers have performed fragmentary analyses of bite wounds caused by certain mammalian species. However, little practical information is available concerning serious mammalian bite wounds that require hospitalization and intensive wound management. Therefore, the purpose of this study was to perform a general review of serious mammalian bite wounds. Methods We performed a retrospective review of the medical charts of 68 patients who were referred to our plastic surgery department for the treatment of bite wounds between January 2003 and October 2012. The cases were analyzed according to the species, patient demographics, environmental factors, injury characteristics, and clinical course. Results Among the 68 cases of mammalian bite injury, 58 (85%) were caused by dogs, 8 by humans, and 2 by cats. Most of those bitten by a human and both of those bitten by cats were male. Only one-third of all the patients were children or adolescents. The most frequent site of injury was the face, with 40 cases, followed by the hand, with 16 cases. Of the 68 patients, 7 were treated with secondary intention healing. Sixty-one patients underwent delayed procedures, including delayed direct closure, skin graft, composite graft, and local flap. Conclusions Based on overall findings from our review of the 68 cases of mammalian bites, we suggest practical guidelines for the management of mammalian bite injuries, which could be useful in the treatment of serious mammalian bite wounds.

Contact Sensitivity to Dinitrochlorobenzene as a Marker Trait in the Indirect Selection for Body Mange and Coccidiosis Resistance in Broiler Rabbits

  • Nandakumar, P.;Thomas, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.165-168
    • /
    • 1999
  • To determine the effects of genetic and environmental influences on cell mediated immune (CMI) responses in broiler rabbits, contact sensitivity to 2,4-Dinitrochlorobenzene (DNCB) was assessed in three temperate broiler breeds of rabbits, namely Soviet Chinchilla, New Zealand White and Grey Giant. The feasibility of using the contact sensitivity to DNCB as a marker trait in selection for disease resistance was examined. There were highly significant differences between breeds (p<0.01) in initial skin thickness and contact sensitivities to DNCB at 24, 48 and 72 hours. Initial skin thickness was greatest in the Soviet Chinchilla breed (mean 2.2484 mm), and was significantly greater (p<0.01) in males (2.4963 mm) than in females (1.7846 mm) (p<0.01). Highest contact sensitivity to DNCB was in the New Zealand White breed with mean increase in skin thickness of 1.1884, 0.9072 and 0.5879 mm at 24, 48 and 72 hours post challenge respectively. Delayed type hypersensitivity (DTH) reaction to DNCB at 24 hours post challenge had a highly significant association (p<0.01) with the incidence of body mange in rabbits. The results indicated a lowered contact sensitivity to DNCB at 24 hours post challenge was associated significantly (p<0.01) with an increase in incidence and severity of body mange, suggesting its potential value as a marker. The correlation s among contact sensitivities at 24, 48 and 72 hours were positive and highly significant (p<0.01); correlations between initial skin thickness and contact sensitivities were negative and highly significant (p<0.01). Another notable significant correlation was between body weight and delayed type hypersensitivity at 24 hours indicating that an enhanced CMI might be associated with better growth rate and general wellbeing.