• Title/Summary/Keyword: Delaunay Triangulation Method

Search Result 87, Processing Time 0.025 seconds

Tetrahedral Mesh Generation by Using the Advancing-Front Method and the Optimal Surface Triangular Mesh Generation Technique (전진경계기법과 최적 표면 삼각형 요소망 생성 기법을 이용한 사면체 요소망의 생성)

  • Lee M.C.;Joun M.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.138-147
    • /
    • 2006
  • A systematic approach to tetrahedral element or mesh generation, based on an advancing-front method and an optimal triangular mesh generation technique on the surface, is presented in this paper. The possible internal nodes are obtained by the octree-decomposition scheme. The initial tetrahedral mesh system is constructed by the advancing-front method and then it is improved by the quality improvement processes including mesh swapping and nodal smoothing. The approach is evaluated by investigating the normalized length, the normalized volume, the dihedral angle and the normalized quality

Study out Analyze antenna simply by Moment method (Moment 법에 의한 간편한 안테나 해석 프로그램 구현)

  • Kwon, So-Hyun;Kang, Sung-Tek;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.418-421
    • /
    • 2008
  • This paper presents the program to analyze an antenna for using the Moment Method. The program contains three different functional steps. In the first stage, the pre-processor is based on the Delaunay Triangulation Algorithm. The next stage, the main-processor, can be considered the core process of the program, which solutions are obtaining the linear matrix for using the Moment Method. The final stages, the name of the post-processor, analyze radiation patterns, which results are same with the S-parameters. The results demonstrate satisfactory agreement with the results for using other numerical packages and measurement data. We can confirm that the results of this program compare with the results of common program to analyze for an antenna.

  • PDF

Investigation on the Automatic Tool Mesh Generatio for Sheet Metal Stamping Analysis (박판성형해석을 위한 자동 툴 격자 생성에 관한 연구)

  • 유동진
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.140-151
    • /
    • 2000
  • The finite element mesh approach for tool surface description is applied effectively to analyze sheet metal stamping processes. To improve the mesh quality and the stability of the mesh generation process, a gybrid method based on the grid approach and the Delaunay triangulation is proposed in the present work. In the present study, a general method for the mathematical description of arbitrarily shaped tool surface is proposed by introducing the parametric surface approach. A polynomial function employed to describe the base parametric surface and the boundary curves are defined to describe arbitrary three-dimensional trimmed surfaces. To verify the validity of the proposed method, automatic mesh generation is carried out for some shosen complicated parts including actual automotive panel.

  • PDF

Mesh Generation Methodology for FE Analysis of 3D Structures Using Fuzzy Knowledge and Bubble Method (피지이론과 버블기법을 이용한 3차원 구조물의 유한요소해석을 위한 요소생성기법)

  • Lee, Joon-Seong;Lee, Eun-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.230-235
    • /
    • 2009
  • This paper describes an automatic finite element mesh generation for finite element analysis of three-dimensional structures. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of finite element for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for 3D geometry.

Automatic Mesh Generation System for FE Analysis of 3D Crack (3차원 균열의 유한요소해석을 위한 자동요소분할 시스템)

  • Lee, Ho-Jeong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2183-2188
    • /
    • 2009
  • This paper describes an automatic mesh generation system for finite element analysis of three-dimensional cracks. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three sub-processes: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional crack structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Practical performances of the present system are demonstrated through several mesh generations for 3D cracks.

A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud (LIDAR를 이용한 삼차원 점군 데이터의 삼각망 구성 방법 및 샘플링에 따른 암반 불연속면 방향 검출에 관한 연구)

  • Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, a LIDAR laser scanner was used to scan a rock slope around Mt. Gwanak and to produce point cloud from which directional information of rock joint surfaces shall be extracted. It was analyzed using two different algorithms, i.e. Ball Pivoting and Wrap algorithm, and four sampling intervals, i.e. raw, 2, 5, and 10 cm. The results of Fuzzy K-mean clustering were analyzed on the stereonet. As a result, the Ball Pivoting and Wrap algorithms were considered suitable for extraction of rock surface orientation. In the case of 5 cm sampling interval, both triangulation algorithms extracted the most number of the patch and patched area.

Level Set Based Topological Shape Optimization of Hyper-elastic Nonlinear Structures using Topological Derivatives (위상 민감도를 이용한 초탄성 비선형 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.559-567
    • /
    • 2012
  • A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.

Stereo Visual Odometry without Relying on RANSAC for the Measurement of Vehicle Motion (차량의 모션계측을 위한 RANSAC 의존 없는 스테레오 영상 거리계)

  • Song, Gwang-Yul;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.321-329
    • /
    • 2015
  • This paper addresses a new algorithm for a stereo visual odometry to measure the ego-motion of a vehicle. The new algorithm introduces an inlier grouping method based on Delaunay triangulation and vanishing point computation. Most visual odometry algorithms rely on RANSAC in choosing inliers. Those algorithms fluctuate largely in processing time between images and have different accuracy depending on the iteration number and the level of outliers. On the other hand, the new approach reduces the fluctuation in the processing time while providing accuracy corresponding to the RANSAC-based approaches.

An Algorithm of Automatic 2D Quadrilateral Mesh Generation with the Line Constraints (라인(line) 제약조건을 가지는 2차원 사각 메쉬의 자동 생성 알고리즘)

  • 김인일;이규열;조두연;김태완
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.10-18
    • /
    • 2003
  • FEM (Finite Element Method) is a fundamental numerical analysis technique in wide spread use in engineering application. As the solving time occupies small portion of entire FEM analysis time because of development of hardware, the relative lime to the whole analysis time to make mesh mod-els is growing. In particular, in the case of stiffeners such as features attached to plate in ship structure, the line constraints are imposed on mesh model together with other constraints such as holes. To auto-matically generate two dimensional quadrilateral mesh with the line constraints, an algorithm is pro-posed based on the constrained Delaunay triangulation and Q-Morph algorithm in which the line constraints are not considered. The performance of the proposed algorithm is evaluated. And some numerical results of our proposed algorithm ate presented.

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.